Effect of Phaleria macrocapa on Atrophy and Apoptosis of Intestinal Mucous Cell and Phalerin Concentration at Portal Vein and Systemic Circulation in Adenocarcinoma Mice following Adriamycine and Cyclophosphamide Treatment

Titik Sumarawati1,*, Ignatius Riwanto2, Soeharyo Hadisaputro1, Edi Dharmana4, Taufiqurachman Nasihun5

ABSTRACT

INTRODUCTION

Bread cancer in female remain constitute the second leading cause of death following lung cancer.1 In general, management of breast cancer utilizes various approaches such as surgery, radiation, endocrine treatment, immunotherapy, and chemotherapy according to its clinical stage.2 Chemotherapies were most frequently used in breast cancer management is combination of Adriamycine and Cyclophosphamide (AC) or Cyclophosphamide, Adriamycine, and Fluorourasil (CAF).3 Considering those regimen were incapable of differencing accurately the cancer and the normal cell, therefore, albeit chemotherapy was effective in tumor regression, unfortunately in the same time the deleterious adverse effects also emerging.2 Various adverse effects such as reducing blood cell number, mouth sore, intestinal disorder, and hair fall are the consequence of cell death induced by those regiments.2 Accordingly, an effort to diminish those adverse effects with an adjuvant therapy deriving from botanical product Phaleria macrocapa (PM) is necessary.4

Some evidences indicated that PM possess pharmacological effects such as anti-diabetes, anti-inflammation, antioxidant, anti-cancer, and in the same time also have protective effect on organs damages.5 However, it is remaining unclear whether the effect of AC treatment in combination with PM also damage other organs such as intestinal mucous cells, and is there any correlation between the severity of intestinal cell damage and phalerin absorption which is marked by phalerin level in systemic circulation.6 Adriamycine or known as Doxorubicin Hydrochloride constituting a high toxic substance on cancer cells. The cytotoxicity of adriamycine is worked due to inhibition of topoisomerase 2 activity, induce apoptosis and necrosis, therefore disturb deoxyribo nucleic acid (DNA) and Ribose Nucleic Acid (RNA) replication and halt cancer proliferation.7 The toxicity of adriamycine, aside from induce apoptosis and necrosis on malignant cells, also cause bone marrow depression and damage to intestinal mucous cells,8 by which intestinal absorption potency is damages.6 However, it is remaining unclear whether the effect of AC treatment in combination with PM also damage other organs such as intestinal mucous cells, and is there any correlation between the severity of intestinal cell damage and phalerin absorption which is marked by phalerin level in systemic circulation.

also demonstrated that the damaging cells due to Adriamycin are attributable to increase in reactive oxygen species (ROS) concentration and thus oxidative stress.\(^{10,11}\)

Cyclophosphamide (CP) is widely used as anti-cancer is an alkylating agent, which active in resting phase (nonspecific) of cell cycle. The toxicity of CP is characterized by DNA and RNA strand cross-linking and inhibition of protein synthesis induced by phosphoramide mustard.\(^{12,13}\) Phosphoramide mustard is a metabolite of CP that possess double function, which bind to N-7 group of guanin and phosphat backbone of DNA and therefore induce cellular apoptosis.\(^{12}\) In addition, Selby PJ, et al. also reported that treatment of CP intra venous with dose 7g m\(^{-2}\), was proven incapable of altering the intestinal permeability and able to reduce cellular damage following treatment of anti-cancer melphalan.\(^{13}\) On the other hand, there are various studies demonstrated that chemotherapeutic agent was proven induce mucositis and result in apoptosis of intestinal somatic and regenerative stem cell, villous atrophy, and enterocyte mass.\(^{14,15}\) Consequently, chemotherapeutic agent such as CP in combination with Adriamycin is able to induce intestine cells permeability alteration and its absorption rate. Accordingly, addition of \textit{Phaleria macrocarpa} extract containing Phalerin as anti-cancer constitute a rational choice in order to enhance the efficacy of CP modality and diminish its side effect at ones.

\textit{Phaleria macrocarpa} is Indonesian indigenous plant, traditionally utilized to cure diabetic, rheumatic, kidney diseases, and various type of cancer.\(^{16}\) Phytochemical analysis on PM demonstrated that various substance such as Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetyllavicordin-A, flavicordin-A, flavicordin-D, lavicordin-A glucoside, ethyl steaerate, lignans, alkaloids and saponins were contained in PM.\(^{16}\) Several evidences also indicated that treatment of PM in combination with AC have been proven capable of increasing immunologic parameter in breast cancer.\(^{17}\) In addition, treatment of PM on adenocarcinoma CH3 mice after treating with AC also demonstrated that PM was able to enhance immune response.\(^{16}\) Another study was reported by Riwanto also suggested that PM treatment in combination with AC synergistically able to reduce tumor cell growth and proliferation mediated by increase in apoptosis, as well as protect normal liver and kidney organ from damage.\(^{18}\) The dose of Adriamycin was utilized in that study 60-75 mg/m\(^2\) and Cyclophosphamide was 100-2000 mg/m\(^2\).\(^{18}\) Considering, the successful rate of oral medication is extremely affected by absorption, dose, and availability of active substances on action site,\(^{19}\) therefore, phalerin, the prominent active substance of PM, is Indonesian indigenous plant, traditionally utilized to cure diabetic, rheumatic, kidney diseases, and various type of cancer.\(^{16}\) The dose of Adriamycin was utilized in that study 60-75 mg/m\(^2\) and Cyclophosphamide was 100-2000 mg/m\(^2\).\(^{18}\) Considering, the successful rate of oral medication is extremely affected by absorption, dose, and availability of active substances on action site,\(^{19}\) therefore, phalerin, the prominent active substance of PM, is Indonesian indigenous plant, traditionally utilized to cure diabetic, rheumatic, kidney diseases, and various type of cancer.\(^{16}\)

\textit{Phaleria macrocarpa} taken from Tasikmalaya west Java was dried, crushed, and extracted by Soxhlet methods and utilize ethanol as a solvent. The process was run in 8-10 times circulation. Ethanol was disolved by using a rotary evaporator and dried in an oven at 40\(^{\circ}\)C for one hour. The extract was diluted by aquabidest at the concentration of 0.2 mg/ml.

Measurement of intestinal mucous cell atrophy

Smooth intestinal mucous cell atrophy was calculated based on haematoxylin and eosin (H&E) staining preparation and examined by light microscopic in 400 magnification. The grading score of intestinal mucous cell atrophy was determined by Maepheusen & Pfeiffer methods and can be described in Table 1.\(^{18,20}\)

Measurement of apoptosis index of intestinal mucous cell

Apoptosis index was identified by \textit{terminal deoxynucleotidyl transferase dntp nick end labeling} (TUNEL) method. The findings of TUNNEL positive cells in each group were calculated (10 field slides) and examined by light microscopic in 400 magnifications.

Measurement of phalerin concentration

Two hundred micro liter of serum was aspirated from portal vein and systemic circulation added with 200 \(\mu\)L mixture of MeOH and CH3CN with 90:10 ratio, then Vortexed for 2 minutes and centrifuged at 10,000 rpm for 5 minute at 17\(^{\circ}\)C. The supernatant then taken and placed in eppendorf and dried in water bath at 50\(^{\circ}\)C in nitrogen continuous flush out and then dissolved again in MeOH 200 \(\mu\)L. Fluid result from that process was filtered with 0.45 \(\mu\)m Millipore filter and injected to HPLC at 20 \(\mu\)L thereafter.

Statistical analysis

The statistical analysis was adopted in this study were \textit{Kruskal Wallis}, followed by Chi square, and Mann Whitney (nonparametric), and

Table 1: Histopathological Grading Score.

<table>
<thead>
<tr>
<th>Score</th>
<th>Microscopic findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal Intestinal mucous cell</td>
</tr>
<tr>
<td>1</td>
<td>Mucosa: villus blunting, loss of crypt architecture, sparse inflammatory cell infiltration, vascularization and edema. Normal muscular layer</td>
</tr>
<tr>
<td>2</td>
<td>Mucosa: villus blunting with fattened and vacuolated cells, crypt necrosis, intense inflammatory cell infiltration, vascularization and edema. Normal muscular layer</td>
</tr>
<tr>
<td>3</td>
<td>Mucosa: villus blunting with fattened and vacuolated cells, crypt necrosis, intense inflammatory cell infiltration, vascularization and edema</td>
</tr>
<tr>
<td></td>
<td>Muscular: edema, vascularization, sparse neutrophil infiltration</td>
</tr>
</tbody>
</table>
independent t test (parametric). Significantly level was considered when $p \leq 0.05$.

RESULTS

Following treatment with extract PM alone and PM in combination with AC for 21 days, the result of measurement of intestinal cells atrophy grading score and apoptosis index in each group are summarized in Table 2.

The result of the study indicated that the highest intestinal cell mucous atrophy and apoptosis were in PMAC-G, followed by PM-G, and the lowest was in Neg-G. Kruskall wallis statistical analysis demonstrated that there were significant difference of atrophy grading score and apoptosis index amongst groups, $p < 0.05$. The differences intestinal mucous cell atrophy and index of apoptosis between two groups will be described below.

Atrophy grading score of intestinal mucous cell

By the Chi-Square statistical analysis indicated that the grading score of intestinal mucous cell atrophy in PM-G and PMAC-G was significant higher compared to that of Neg-G, $p < 0.05$ respectively. Likewise, the grading score of intestinal mucous cell atrophy in PMAC-G was significant higher compared to that of PM-G, $p < 0.05$ (Figure 1).

Apoptosis index of intestinal mucous cell

By Mann Withney statistical analysis showed that apoptosis index in PM-G and PMAC-G were significant higher compared to that of Neg-G, $p < 0.05$ respectively. Similarly, the apoptosis index in PMAC-G also showed significant higher compared to that of PM-G, $p < 0.05$ (Figure 2).

Phalerin concentration measurement

In the present study also measure concentration of phalerin, a substance contained in phaleria macrocarpha, at portal vein, systemic circulation, and tumor tissue in order to evaluate the relationship between the severity of intestinal mucous cell apoptosis and atrophy and its potential phalerin absorption result from phaleria macrocarpha treatment.

Phalerin concentration at portal vein

The result of phaleria concentration measurement with HPLC methods at portal vein blood stream are summarized in Table 3.

The phalerin concentration at portal vein can only be measured at minute 30, 60, and 90, due to the death of all mice. The result of the present study showed that the highest phalerin concentration at portal vein of PM-G and PMAC-G were at minute 30, followed by minute 60, and the lowest was at minute 90. These result demonstrated that phalerin concentration both in portal vein and systemic circulation decline in time fashion. Independent t test indicated that phalerin concentration in PM-G at minute 30, 60, and 90 were significant higher compared to those of PMAC-G, $p < 0.05$ (Figure 3).

Phalerin concentration at systemic circulation

The result of phaleria concentration measurement with HPLC methods at systemic circulation are summarized in Table 4.

The result of the study showed that phalerin concentration at systemic circulation of PM-G was highest in minute 30, followed by 60, 120, 150, and the lowest was at 180 minutes. These result showed that phalerin concentration was declined in time fashion.

Table 2: Grading Score of Intestinal’s Cell Atrophy and Mean of Apoptosis in Adenoma CH3 Female Mice Following PM and PMAC Treatment.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>P (Kruskall wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal mucous cell atrophy grading scale of Macpherson and Pfeiffer</td>
<td>Neg-G N=6 (freq) PM-G N=6 (freq) PMAC-G N=6 (freq)</td>
<td>0.01</td>
</tr>
<tr>
<td>Indexes of Intestinal Cell Apoptosis (%)</td>
<td>Neg-G N=6 (µ±SD) PM-G N=6 (µ±SD) PMAC-G N=6 (µ±SD)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Groups</th>
<th>P (Kruskall wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal mucous cell atrophy grading scale of Macpherson and Pfeiffer</td>
<td>Neg-G N=6 (freq) PM-G N=6 (freq) PMAC-G N=6 (freq)</td>
<td>0.01</td>
</tr>
<tr>
<td>Indexes of Intestinal Cell Apoptosis (%)</td>
<td>Neg-G N=6 (µ±SD) PM-G N=6 (µ±SD) PMAC-G N=6 (µ±SD)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Figure 1: Score of Atrophy of Intestinal Mucous Cell by HE staining methods. Mann Withney: *$p<0.05$.
Figure 2: Index of apoptosis of Intestinal Mucous Cell was measured by TDEC staining methods. Mann Withney: *p<0.05.

Figure 3: Phalerin concentration at systemic concentration at 30, 60, 90, 120, 150, and 150 minutes following treatment. *Independent t test, p<0.05.

Table 3: Phalerin Concentration at Portal Vein Adenoma CH3 Female Mice Following PM and PMAC Treatment.

<table>
<thead>
<tr>
<th>Phalerin Concentration at portal vein (ppm)</th>
<th>Groups</th>
<th>p (independent t test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM-G</td>
<td>PMAC-G</td>
</tr>
<tr>
<td>30</td>
<td>0.283 ± 0.741</td>
<td>0.159 ± 0.005</td>
</tr>
<tr>
<td>60</td>
<td>0.190 ± 0.009</td>
<td>0.131 ± 0.023</td>
</tr>
<tr>
<td>90</td>
<td>0.174 ± 0.007</td>
<td>0.097 ± 0.026</td>
</tr>
</tbody>
</table>

Table 4: Phalerin Concentration at Systemic Circulation in Adenoma CH3 Female Mice Following PM and PMAC Treatment.

<table>
<thead>
<tr>
<th>Phalerin Concentration in systemic circulation (ppm)</th>
<th>Groups</th>
<th>p (Independent t test)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM-G</td>
<td>PMAC-G</td>
</tr>
<tr>
<td>30</td>
<td>0.239 ± 0.088</td>
<td>0.180 ± 0.087</td>
</tr>
<tr>
<td>60</td>
<td>0.212 ± 0.04</td>
<td>0.147 ± 0.017</td>
</tr>
<tr>
<td>90</td>
<td>0.179 ± 0.196</td>
<td>0.139 ± 0.023</td>
</tr>
<tr>
<td>120</td>
<td>0.150 ± 0.165</td>
<td>0.135 ± 0.010</td>
</tr>
<tr>
<td>150</td>
<td>0.111 ± 0.020</td>
<td>0.096 ± 0.018</td>
</tr>
<tr>
<td>180</td>
<td>0.101 ± 0.050</td>
<td>0.068 ± 0.025</td>
</tr>
</tbody>
</table>
hand, phalerin concentration in systemic circulation of PMAC-G was highest in minute 60, followed by minute 90, 120, 30, 150, and the lowest was in minute 180. These result showed that phalerin concentration in PMAC-G didn't declining in time fashion. However, independent t test showed that phalerin concentration in PM-G was significant higher compared to that of PMAC-G, p < 0.05 (Figure 3).

Phalerin concentration at tumor tissues

The result of phaleria concentration measurement with HPLC methods at minute 180 of systemic circulation and mice tumor tissues are summarized in Table 5.

The result of the present study indicated that phalerin concentrations at minute 180 of PMT was higher significant compared to that of PMC, p < 0.05. Phalerin concentration at minute 180 of PMACT was higher compared to that of PMACC; however the difference was not significant, p > 0.05. Likewise, the phalerin concentration at minute 180 in PMC was not significant lower compared to that of PMACT, p > 0.05 (Figure 4).

DISCUSSION

Phalerin or 3,4,5-dihydroxy,4'-methoxybenzophenone-3-O-β-D-glucoside was measured in the present study is a water soluble substance contained in PM.21,22 Hence in normal intestinal lining, phalerin can be absorbed passively by small intestine wall through paracellular route usually referred as intestinal permeability, and continuous toward portal vein and liver.23 In liver, phalerin directly undergo conjugation reaction without firstly being oxidized and hydrolyzed reaction and finally headed for systemic circulation. In systemic circulation, phalerin concentration may reflect the phalerin concentration at receptor site and its effect on cell and tissues. In addition to concentration, the phalerin effect on cells also determined by the receptor's density and its affinity to bind phalerin, subsequently determine its potency and efficacy.24 However, when the intestinal mucosal epithelium is damaged due to various causes including apoptosis, and therefore leading to cellular atrophy, it may decrease in intestinal permeability and subsequently reduce amount of nutrient or drug that can be absorbed as supported by the result of the present study.

The result of the present study demonstrated that phalerin concentration both at portal vein and systemic circulation of PM treatment alone were significant higher compared to that of PM treatment in combination with adriamycine and cyclophosphamide. These result suggested that adriamycine and cyclophosphamid, even in low dose, potentiates damage to intestinal mucous cell and therefore inhibit phalerin absorption. In the present study also indicated that the severity of intestinal mucous cell apoptosis and atrophy in PM treatment in combination with adriamycine and cyclophosphamide were significant higher compared to that of PM alone. It is implied that both adriamycine and cyclophosphamide clearly affect intestinal mucosal cell apoptosis and atrophy. A study was reported by Guo P et al. showed that treatment with low dose cyclophosphamide cause damage to the intestinal mucous function barrier mediated by decreased in level of interleukin-10.25 Another study was reported by Pette M, et al. also suggested that treatment with cyclophosphamide has been proven capable of inducing apoptosis in lymphocytes.12 Furthermore, a study was reported by Tiku AB, et al. also in agreement with the previous study that cyclophosphamide induced DNA damage which could be inhibited by lemon juice orally.26 Finally, there are huge of evidences demonstrated that cyclophosphamide was proven able to induce damage

Table 5: Phalerin Concentration at minute 180 of systemic Circulation and Tumor Tissues in Adenoma CH3 Female Mice Following PM and PMAC Treatment.

<table>
<thead>
<tr>
<th>Phalerin Concentration at minute 180 of Mice's Syst Circ & tumor tissues (ppm)</th>
<th>Tumor mass</th>
<th>Systemic Circulation</th>
<th>P (Indep t test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>PM-G (χ0.164 ± 0.046)*</td>
<td>PMAC-G (χ0.116 ± 0.097)***</td>
<td>PM-G (χ0.101 ± 0.050)**</td>
</tr>
<tr>
<td>1</td>
<td>0.228</td>
<td>0.118</td>
<td>0.069</td>
</tr>
<tr>
<td>2</td>
<td>0.209</td>
<td>0.075</td>
<td>0.020</td>
</tr>
<tr>
<td>3</td>
<td>0.150</td>
<td>0.097</td>
<td>0.186</td>
</tr>
<tr>
<td>4</td>
<td>0.116</td>
<td>0.103</td>
<td>0.112</td>
</tr>
<tr>
<td>5</td>
<td>0.167</td>
<td>0.224</td>
<td>0.098</td>
</tr>
<tr>
<td>6</td>
<td>0.116</td>
<td>0.080</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Figure 4: Phalerin Concentration at minute 180 of Systemic Circulation and Tumor mass. T test: *p<0.05; **p>0.05.
of various tissues such as liver, kidney, intestinal, cardiovascular, even induce amenorrhoea, early menopause, and hair loss.\(^2\)\(^5\)\(^7\)

On the other hand, adriamycine also have been proven capable of inducing apoptosis in stem cell jejunum, followed by mucosal damage, decreased in crypt number caused by reduced proliferation, subsequently villus height.\(^2\)\(^4\) A study was done by Wang S, et al. also displayed that adriamycine was able to induce apoptosis in endothelial cell and cardiomycocytes mediated by p53 and reactive oxygen species activation.\(^2\)\(^9\) Another study was reported by Ferreto, et al. also in agreement with the prior study that adriamycine was induce apoptosis mediated by decrease in anti-apoptotic Bcl-2 and increase in hydrogen peroxide and stress oxidative thereafter.\(^2\)\(^6\) In this study also displayed that adriamycine treatment up regulate expression of protein proapoptosis such as Bax, caspase-8, and caspase-3.\(^2\)\(^0\) In addition, an in-vitro study was reported by Oliveira MP, et al. demonstrated that treatment of adriamycine alone or in combination with cyclophosphamide have been proven posses high toxicity in cell particularly cardiomycocyte.\(^2\)\(^8\)

Refer to the aforementioned data, subsequently can be implied that treatment with adriamycine alone or in combination with cyclophosphamide was very toxic to various cell and tissues. This toxicity was mediated by decreasing in mitochondrial potential membrane, down regulating anti-apoptosis protein expression such as Bcl-2, and otherwise up regulating expression of protein proapoptosis such as Bax and particularly caspase-3.\(^2\)\(^9\) In addition, an in-vitro study was reported by Riwanto I, Prasetyo SA, Budijitno S, Dharmana E, Handojo D, Eko A, et al.\(^2\)\(^6\) Effect of Phaleria macrocarpa Supplementation on Apoptosis and Tumor Growth of CSH Mice with Breast Cancer Under Treatment With Adriamycine–Cyclophosphamide. Int Surg. 2011;96:164-70.

REFERENCES

Sumarawati, et al.: Effect of Phaleria macrocapa on Atrophy and Apoptosis of Intestinal Mucous Cell and Phalerin Concentration at Portal Vein and Systemic Circulation in Adenocarcinoma Mice following Adriamycine and Cyclophosphamide Treatment

GRAPHICAL ABSTRACT

ABOUT AUTHORS

Titiek Sumarawati, received her doctoral degree at Diponegoro University Semarang in 2012. She is currently a lecturer at Universitas Islam Sultan Agung Semarang Indonesia. Her research interests are medicinal chemistry and drug discovery.

IGN. Riwanto, Professor in digestive surgery Dr. Karyadi Hospital Semarang, received his PhD at Free University Amsterdam in 1992. He is consultant of digestive surgeon in Dr Kariadi and St Elizabeth hospital. Also, lecturer of undergraduate (surgery) and postgraduate (specialist trainer in general surgery, sub-specialist trainer in Digestive Surgery, Master of Biomedical and Medical/Health Doctorate program).
Sumarawati, et al.: Effect of Phaleria macrocapa on Atrophy and Apoptosis of Intestinal Mucous Cell and Phalerin Concentration at Portal Vein and Systemic Circulation in Adenocarcinoma Mice following Adriamycin and Cyclophosphamide Treatment

Suharyo Hadisaputro, Professor in medicine medical faculty Diponegoro university. He is specialist in internal Medicine and consultant of tropical infectious diseases. Also chief of researcher tropical infectious disease and concern in epidemiology of communicable and noncommunicable diseases.

Edi Dharmana, Professor in immunology, received his PhD at Radboud University Nijmegen Netherlands. He is specialist in clinical parasitology, consultant, and lecturer in clinical immunology, also researcher in botanical product.

Taufiqurrachman Nasihun, Professor in medicine. Received his doctoral degree at Diponegoro university Semarang in 2007. He is specialist in andrology, consultant in sex and antiaging medicine, and concern in medical biochemistry. He is also lecturer in medical biochemistry of medical faculty, Universitas Islam Sultan Agung and researcher in botanical product.