Determination of the Chemical Composition of Lady’s Bedstraw (Galium verum L.) Herb Extract by GC-MS

Zaichikova SG¹, Bokov DO¹,²,.*, Kiselevskii MV², Antsyshkina AM¹, Bondar AA¹, Prostodusheva TV¹, Shchepochkina OYu¹, Gegechkori VI¹

ABSTRACT
Background: The research is devoted to the study of the Lady’s bedstraw (Galium verum L.) herb ethanol extract composition using the method of gas chromatography with mass spectrometric detection. Materials and Methods: Air-dried G. verum L. herb was used for ethanol extract preparation. Hewlett Packard 6890, 5973A GC/MSD System equipped with an HP-5MS quartz capillary column with geometric dimensions of 30 m×0.25 mm×0.25 μm was used for GC-MS analysis. Results: It was established that the Lady’s bedstraw ethanol extract is rich in biologically active substances that determine its wide spectrum of pharmacological action. 15 compounds were identified by comparing with library mass spectra. Conclusions: G. verum L. is a promising source of crude herbal drugs. In the future, after additional pharmacognostic studies, G. verum L. herb can be recommended for implementation in the State Pharmacopeia of the Russian Federation. Key words: Lady’s bedstraw, Galium verum L., Ethanol extract, Gas chromatography-mass spectrometry.

INTRODUCTION
The search for new sources of plant materials and the creation of herbal medicine products based on them with high therapeutic efficacy and low toxicity is currently demanded. Lady’s bedstraw (Galium verum L., Figure 1.1), the Rubiaceae family, is of considerable interest for study. It has a wide range of pharmacological effects and is used only in traditional medicine. G. verum L. crude herbal drugs (CHD) have anti-inflammatory, antimicrobial, antispasmodic, anesthetic, restorative, choleretic, analgesic, diuretic, antispasmodic, estrogenic effects. Also, this plant is used in the prevention and treatment of cancer.1-3 The chemical composition of the G. verum L. is very rich and diverse; it contains tannins4, triterpene compounds5, essential oil6, organic acids7, carotenoids8, flavonoids9,10, iridoid glycosides11,12, anthracene derivatives13 and other biologically active compounds (BAC). Earlier, we studied the toxicity of Lady’s bedstraw aqueous extract preparation. We concluded that the Lady’s bedstraw liquid extract refers to IV class, known as slightly hazardous substances according to the classification of chemicals by hazard.13

As G. verum L. herb possesses a wide spectrum of biological activity (including cancer prevention and treatment) our research aimed to carry out an in-depth study of the plant’s ethanol extract chemical composition by gas chromatography with mass spectrometric detection.

MATERIALS AND METHODS
Plant material
G. verum L. herb was collected in July 2018 in the southwest of the Moscow region (Russia), dried in the air-shade.

Sample preparation
Sample of the raw material was ground to a particle size passing through a sieve with a hole size of 2 mm. Lady’s bedstraw ethanol extract (1:10) was prepared using 70 % ethanol. Then it was evaporated in a nitrogen stream at room temperature to 0.1 cm³ residual volume. The prepared sample was analyzed by gas chromatography with a mass spectrometric detector in total ion current mode.

Instrumentals
Hewlett Packard 6890, 5973A GC/MSD System equipped with an HP-5MS quartz capillary column with geometric dimensions of 30 m×0.25 mm×0.25 μm was used. The stationary phase is 5 % diphenyl-95 % dimethylpolysiloxane.

Gas chromatography conditions
The temperature program was applied as follows. Thermostat: initial – 36±1°C, hold 36°C – 1 min, final – 260±1°C, hold 260°C – 5 min, injector temperature – 150°C. Injector split ratio was 10:1, the temperature programming rate of the column thermostat is 5°C/min from 36 to 60 °C, then 15°C/min from 60 to 260 °C. The carrier gas (helium) flow rate is 1±0.1 ml/min. The injected sample volume is 1 μl.

Mass-spectrometry conditions
Ionization voltage: – 70 eV; ion source temperature – 230 °C; quadrupole temperature – 150 °C; intermediate line temperature – 280 °C. Mass-spectrometric conditions: scanning range of 15-550 m/z, gas hold-up time – 2.0 min from 36 to 60 °C, then 15 °C/min from 60 to 260 °C. The carrier gas (helium) flow rate is 1±0.1 ml/min. The injected sample volume is 1 μl.

RESULTS AND DISCUSSION

The result of *G. verum* L. herb ethanol extract qualitative analysis is presented in Table 1.

G. verum herb ethanol extract chromatogram is presented in Figure 2.

The mass spectra of the identified compounds (compared to library mass spectra) are shown in Figures 3-10.

The identified compounds, for the most part, are fatty acids and their esters in Lady's bedstraw herb ethanol extract. Phytol – an acyclic aliphatic organic chemical compound, refers to diterpenes, that have monounsaturated isoprene residues as a base. Phytol is part of chlorophyll, vitamin E, vitamin K, as a phytol substitute.

CONCLUSION

We identified 15 compounds not previously described in the literature. Identification is based on the Lady’s bedstraw herb ethanol extract mass spectrometric studies. The obtained data can be used in further study of Lady’s bedstraw and the creation of new herbal medicine products and regulatory documentation on its basis.

Table 1: Identified compounds in Lady’s bedstraw herb ethanol extract.

<table>
<thead>
<tr>
<th>No</th>
<th>Retention time, min</th>
<th>Compound name</th>
<th>Chemical formula</th>
<th>M. W. A. W. U.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,78</td>
<td>5,6,7,7A-tetrahydro-4,4,7A-trimethyl-2(4H)-benzofuranone</td>
<td>C<sub>11</sub>H<sub>16</sub>O<sub>2</sub></td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>17,19</td>
<td>Tetradecanoic acid</td>
<td>C<sub>14</sub>H<sub>28</sub>O<sub>2</sub></td>
<td>228</td>
</tr>
<tr>
<td>3</td>
<td>17,58</td>
<td>3-methyl-1-butanolbenzoate</td>
<td>C<sub>12</sub>H<sub>16</sub>O<sub>2</sub></td>
<td>192</td>
</tr>
<tr>
<td>4</td>
<td>18,01</td>
<td>Bicyclo[3.1.1]heptane</td>
<td>C<sub>8</sub>H<sub>14</sub></td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>18,28</td>
<td>Benzoic acid butyl ester</td>
<td>C<sub>12</sub>H<sub>18</sub>O<sub>2</sub></td>
<td>178</td>
</tr>
<tr>
<td>6</td>
<td>18,89</td>
<td>Hexadecanoic acid methyl ester</td>
<td>C<sub>18</sub>H<sub>34</sub>O<sub>2</sub></td>
<td>270</td>
</tr>
<tr>
<td>7</td>
<td>19,26</td>
<td>Hexadecanoic acid</td>
<td>C<sub>18</sub>H<sub>34</sub>O<sub>2</sub></td>
<td>256</td>
</tr>
<tr>
<td>8</td>
<td>19,33</td>
<td>Dibutyl phthalate</td>
<td>C<sub>22</sub>H<sub>22</sub>O<sub>4</sub></td>
<td>278</td>
</tr>
<tr>
<td>9</td>
<td>19,56</td>
<td>Hexadecanoic acid ethyl ester</td>
<td>C<sub>19</sub>H<sub>36</sub>O<sub>2</sub></td>
<td>284</td>
</tr>
<tr>
<td>10</td>
<td>20,53</td>
<td>[Z,Z]-9,15-Octadecadienoic acid methyl ester</td>
<td>C<sub>19</sub>H<sub>34</sub>O<sub>2</sub></td>
<td>294</td>
</tr>
<tr>
<td>11</td>
<td>20,60</td>
<td>[Z,Z,Z]-9,12,15-Octadecatrienoic acid methyl ester</td>
<td>C<sub>19</sub>H<sub>32</sub>O<sub>2</sub></td>
<td>292</td>
</tr>
<tr>
<td>12</td>
<td>20,71</td>
<td>Phytol</td>
<td>C<sub>20</sub>H<sub>40</sub>O</td>
<td>296</td>
</tr>
<tr>
<td>13</td>
<td>20,91</td>
<td>[Z,Z]-9,12-Octadecadienoic acid</td>
<td>C<sub>18</sub>H<sub>32</sub>O<sub>2</sub></td>
<td>280</td>
</tr>
<tr>
<td>14</td>
<td>20,98</td>
<td>[Z,Z,Z]-9,12,15-Octadecatrienoic acid</td>
<td>C<sub>18</sub>H<sub>36</sub>O</td>
<td>264</td>
</tr>
<tr>
<td>15</td>
<td>21,14</td>
<td>Octadecanoic acid</td>
<td>C<sub>18</sub>H<sub>36</sub>O<sub>2</sub></td>
<td>284</td>
</tr>
</tbody>
</table>
Figure 2: Chromatogram of chemical compounds in Lady’s bedstraw alcohol extract.

Figure 3: 5,6,7,7A-Tetrahydro-4,4,7A-trimethyl-2(4H)-benzofuranone (1), tetradecanoic acid (2) mass-spectra.
Zaichikova, et al.: Determination of the Chemical Composition of Lady's Bedstraw (Galium verum L.) Herb Extract by GC-MS

Figure 4: 3-Methyl-1-butanolbenzoate (1), bicycle[3.1.1]heptanes (2) mass-spectra.

Figure 5: butylbenzoate (1), dibutyl phthalate (2) mass-spectra.

Figure 6: Hexadecanoic acid methyl ester (1), dibutyl phthalate (2) mass-spectra.
Figure 7: Hexadecanoic acid ethyl ester (1), [Z,Z]-9,15-Octadecadienoic acid methyl ester (2) mass-spectra.

Figure 8: [Z,Z,Z]-9,12,15-Octadecatrienoic acid methyl ester (1), phytol (2) mass-spectra.

Figure 9: [Z,Z]-9,12-Octadecadienoic acid (1), [Z,Z,Z]-9,12,15-Octadecatrienoic acid (2) mass-spectra.
ACKNOWLEDGEMENT

This paper was financially supported by "Russian Academic Excellence Project 5-100".

CONFLICTS OF INTEREST

None.

REFERENCES

Zaichikova, et al.: Determination of the Chemical Composition of Lady's Bedstraw (Galium verum L.) Herb Extract by GC-MS

GRAPHICAL ABSTRACT

ABOUT AUTHORS

- **Zaichikova Svetlana Gennad'evna:** Doctor of Pharmaceutical Sciences (Dr.Sc.), Professor, Professor of Pharmaceutical Natural Sciences Department, A.P. Nelyubin Institute of Pharmacy, Sechenov University.
- **Bokov Dmitry Olegovich:** Candidate of Pharmaceutical Sciences (Ph.D.), A.P. Nelyubin Institute of Pharmacy, Sechenov University; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety.
- **Kiselevskii Mikhail Valentinovich:** Doctor of Medical Sciences (Dr.Sc.), Professor, Head of the Laboratory of Cell-Mediated Immunity, Blokhin National Medical Research Center of Oncology.
- **Antsyshkina Alla Mikhailovna:** Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor of Pharmaceutical Natural Sciences Department, A.P. Nelyubin Institute of Pharmacy, Sechenov University.
- **Bondar Alina Aleksandrovna:** Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor of Pharmaceutical Natural Sciences Department, A.P. Nelyubin Institute of Pharmacy, Sechenov University.
- **Prostodusheva Tatyana Vladimirovna:** Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor of Pharmaceutical Natural Sciences Department, A.P. Nelyubin Institute of Pharmacy, Sechenov University.
- **Shchepochkina Olga Yurievna:** Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor of A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, A.P. Nelyubin Institute of Pharmacy, Sechenov University.
- **Gegechkori Vladimir Iraklievich:** Candidate of Pharmaceutical Sciences (Ph.D.), Senior Lecturer of A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, A.P. Nelyubin Institute of Pharmacy, Sechenov University.