@article {545, title = {Structural Elucidation of Peanut, Sunflower and Gingelly Oils by Using FTIR and 1H NMR Spectroscopy}, journal = {Pharmacognosy Journal}, volume = {10}, year = {2018}, month = {June 2018}, pages = {753-757}, type = {Original Article}, chapter = {753}, abstract = {

Aims: The present study focused on FTIR and 1H-NMR spectroscopic methods to assign structural connectivity and purity of the oils. Methods: Non-destructive Fourier Transform Infrared (FTIR) and 1H nuclear magnetic resonance (1H-NMR) spectroscopy techniques are used to assign the structural confirmation of the triacylglyceride (TAG) functional component in three different oils namely Sunflower, Peanut, and Gingelly oils respectively. Results: FTIR spectrum shows a very high intense band at 1744 cm-1 associated with the existence of the ester carbonyl functional group (O-C=O) and very weak shoulder peak of cis double-bond (C=C) stretching was noticed at \∼1655 cm-1. In 1H-NMR spectrum shows well resolved chemical shift values in the range 5.3-0.8 ppm corresponding to characteristic group in aliphatic region. Conclusion: Each distinct peak was determined based on chemical shift as well as splitting pattern values. For olefin signal as triplet, tertiary methine protons as singlet, well separated oxymethylene seen as triplet at ~4.2 ppm owing to presence of high electronegative oxygen atom connected to methylene chain gives more deshielding effect. As for bis-allylic, \α-carbonyl methylene, \β-carbonyl methylene, allylic, saturated methylene along with terminal methyl proton signals are noticed in the span of 2.3-0.8 ppm. A remarkable feature of the spectra is well resolved chemical shift values is clearly support presence of longer hydrocarbon chains. Absence of multiplet coupling peaks and disappearance of signals in down shield region \> 5.4 ppm confirms the absence of trans stereoisomer (E-conformation), aromatic and heterocyclic epoxide compounds.

}, keywords = {1H-NMR, FTIR, TAG, Unsaturation, WHO, Z-Conformation}, doi = {10.5530/pj.2018.4.126}, url = {http://fulltxt.org/article/664}, author = {Veeraprakash Bathini and Suresh Kumar Kalakandan and Muthukumaran Pakkirisamy and Karthikeyen Ravichandran} } @article {580, title = {Studies on Positive and Negative ionization mode of ESI-LC-MS/ MS for screening of Phytochemicals on Cassia auriculata (Aavaram Poo)}, journal = {Pharmacognosy Journal}, volume = {10}, year = {2018}, month = {March 2018}, pages = {457-462}, type = {Original Article}, chapter = {457}, abstract = {

Background: Cassia auriculata (Avaram) is an important medicinal plant in India Improved awareness in medicinal flowers has led to an increased need for efficient extraction methods and screening of flavonoid derivatives. Objective: To standardization of extraction solvent system and Characterization of flavonoids through positive and negative electrospray ionization mode using LC-MS/MS from Cassia auriculata extract. Materials and Methods: The different solvents like Methanol, Water, Acetonitrile, Ethyl Acetate, Ethanol, Chloroform, Hexane, Acetone Diethyl ether used frot he identification of flavonoids (Gallic acid, Theanine, Theobromine, Theophylline, Caffeic acid, Caffeine, Ferulic acid, Theacrine, Catechin, Quercetin, EpiGallo Catachin, catechin gallate, Epicatachin gallate and Quercetin hexoside. Results: Based on the peak area percentage the extraction solvent was standardized. The percentage of relative \& absolute intensity of screened flavonoids was observed using LC-MS in positive and negative electrospray ionization. The results show that the methanol extract has more percentage of peak area, relative intensity and absolute intensity. The MS results showed that the negative ionoization has more intensity values of flavonoids and the signal-to-noise ratio was high in negative ionization mode compare to positive mode. Conclusion: Based on the results the methanol is the suitable extraction solvetnt and negative ionization mode of ESI-LC-MS/MS was appropriate for the screening of flavonoids on Cassia auriculata flower extracts.

}, keywords = {Caucalis platycarpos L.; Methanol, Eelectrospray ionization, Flavonoids; UHPLCESI- MS}, doi = {10.5530/pj.2018.3.75}, url = {http://fulltxt.org/article/508}, author = {Paranthaman Ramakrishnan and Sureshkumar Kalakandan and Muthukumaran Pakkirisamy} } @article {434, title = {Phytochemical Screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesia Roxb (Black Turmeric)}, journal = {Pharmacognosy Journal}, volume = {9}, year = {2017}, month = {September 2017}, pages = {952-956}, type = {Original Article}, chapter = {952}, abstract = {

Aims: The purpose of the current study is to monitor the phytochemical constituents in the Curcuma caesia Roxb.by GC MS and FT-IR analysis. Methods: The Rhizomes of Curcuma caesia Roxb was extracted with Methanol at room temperature for 8 h. The bioactive compounds of Curcuma caesia Roxb have been evaluated using GC-MS and FT-IR. Results: Preliminary phytochemical analysis revealed the presence of tannins, terpenoids, flavonoid, alkaloid, phenol, phytosterol Quinones and saponins. Totally 15 compounds were identified and the chromatograph showed peaks with individual compounds. The major constituents were identified in the Methanolic extract were \α-Santalol (46.90\%), Retinal (10.72\%), Ar-tumerone(10.38\%), Alloaromadendrene (5.93\%), Megastigma-3,7(E),9-triene (4.80\%), Benzene, 1-(1,5-dimethyl- 4-hexenyl)-4-methyl(4.38\%) , 5,8,11,14,17-Eicosapentaenoic acid, methyl ester, (all-Z)-(4.26\%) Tricyclo[8.6.0.0(2,9)]hexadeca-3,15-diene, trans-2,9-anti-9,10-trans-1,10 (3.26\%) and many other compounds were identified as low level. The FTIR analysis confirmed the presence of N-H , O-H , C=C , C-H, C-O and CH3 functional groups. Conclusion: The result of this study offer a platform of using Curcuma caesia Roxb as herbal alternative for various diseases and it can be used as functional and pharmaceutical food.

}, keywords = {Curcuma caesia Roxb, FT-IR, GC MS, Phyto chemical, α-Santalol and Retinal.}, doi = {10.5530/pj.2017.6.149}, url = {http://fulltxt.org/article/202}, author = {Muthukumaran Pakkirisamy and Suresh Kumar Kalakandan and Karthikeyen Ravichandran} }