Preliminary Acute Oral Toxicity Study of White Tea Leaf (Camellia sinensis (L.) Kuntze) Ethanolic Extracts

Lia Ardiana, Meiliza Ekayanti, Sarah Zielda Najib, Rani Sauriasari*, Berna Elya

Faculty of Pharmacy, University of Indonesia, 16424, Depok, INDONESIA

Correspondence
Rani Sauriasari,
Faculty of Pharmacy, University of Indonesia, 16424, Depok, INDONESIA
Tel: +62 21-727-0031; +62 821-1425-2811
E-mail: rani@farmasi.ui.ac.id

History
• Submission Date: 16-01-2017;
• Review completed: 02-03-2017;
• Accepted Date: 27-03-2017

DOI: 10.5530/pj.2017.4.77
Article Available online
http://www.phcogj.com/v9i4

Abstract
Background: White tea is a kind of tea which manufactured with minimal processing only drying without fermentation process. Tea leaf prepared from very young tea leaves or buds of Camellia sinensis (L.) Kuntze, Theaceae, covered with tiny, silvery hairs, and dried immediately after picking to prevent oxidation and commonly used as a beverage and herbal medicine. Objective: The present study was aimed to evaluate the safety of the white tea leaf ethanolic extract (WTE) with acute toxicity tests. Methods: The acute oral toxicity of WTE performed at dose 1250, 2500, and 5000 mg/kg BW of Deutschland, Denken, and Yoken (DDY) mice. The animals observation for any mortality, behavioral, body weight and feed-water consumption pattern during the 14-day study. The liver, kidney, and heart isolation performed on day-15 to observe macroscopic and relative organ weight (ROW). Results: No treatment-related toxic symptom or mortality observed for the first 4 hours and 24 hours after oral administration of WTE at a dose of 1250, 2500, and 5000 mg/kg BW. All the groups of mice did not show the significant changes in behavior, breathing, and motonic activity. Conclusions: This studies showed that the oral LD₅₀ of WTE was greater than 5000 mg/kg BW and suggests that the WTE is practically non-toxic in a single dose of level 5000 mg/kg BW.

Key words: Acute Toxicity, Camellia Sinensis (L.) Kuntze, Safety, Teh Putih, Theaceae.

Introduction
The tradition of drinking tea at this time has become one of culture in every community. Therefore, tea is the most popular beverage in the world¹, made from the leaves of the tea plant, Camellia sinensis (L.) Kuntze, Theaceae. One type of the tea is a white tea that manufactured with minimal processing only drying without fermentation process. White tea leaf, also known as ‘teh putih’ in Indonesia, prepared from very young tea leaves or buds covered with tiny, silvery hairs, then dried soon after collected, to prevent oxidation.² The high concentrations of tea polyphenols and catechins are higher in white tea compared to green or black tea.³,⁴ The recent investigation associated with the bioactive compound like polyphenols-flavonoids-catechins of tea due to their antioxidant activities which contribute to human health benefits.³,⁴ Pharmacological research indicates that tea leaf extract has pharmacological activities such as antiadipetic, anticarcinogenic, antiviral, antibacterial, antiinflammatory, anti-aging and immune boosting antioxidant activities which contribute to human health.³,⁴ This activity associated with the efficacy of tea for the prevention and treatment of disease.⁵ As the second biggest biodiversity in the world, Indonesia has a high number of indigenous medicinal plants.⁶ Therefore, traditional medicine is one of the cultural heritage of ancestors and very well known in Indonesia. Although traditional medicine has been used for a long time but not completely safe, it is important to determine the potential acute toxicity of herbal medicines through LD₅₀ value and the spectrum of toxic effects. The potential acute toxicity of herbal medicine can be used to assess the limits of safety or therapeutic index (LD₅₀/ED₅₀). The efficacy and toxicity of tea leave assumed from their very long history of consumption in the world and their main functional ingredients studies,⁷ but a systematic evaluation of the toxicity of white tea has been lacking. Therefore, the present study was aimed to evaluate the safety of the white tea leaf ethanolic extract (WTE) with acute toxicity tests in Deutschland, Denken, and Yoken (DDY) mice.

Materials and Methods
Plant Material and Extraction
The white tea obtained from the Tea Plantation and Quinine Research Center in Gamboeng, West Java, Indonesia. White tea leaves (Camellia sinensis L. Kuntze) sorted and collected then dried under sunlight. Furthermore, the tea leaves withered with a dryer. The white tea leaves powder made by grinding dried white tea leaves by using a grinder. Extraction method conducted by reflux with ethanol 70% at 60°C for 3 hours, then re-reflux for two times and evaporated using evaporator.

Animal Test
Adult healthy Deutschland, Denken, and Yoken (DDY) mice, weight 20-30 g and approximately six.
weeks old, were used from Department of Pharmacology, University of Indonesia. All mice were acclimatized for seven days before the tests, then fasted four hours before administration of the WTE, while drinking still given.

Acute Toxicity Study

The oral acute toxicity study of WTE has conducted according to Organization for Economic Co-operation and Development (OECD) guideline with the limit test dose at 5000 mg/kg body weight (BW). The animals divided randomly into four groups; each consisted of 10 mice (five males and five females). The 1st group served as a control, while 2nd, 3rd, and 4th served as treated groups received orally WTE (dissolved in water) with a successive dose of 1250, 2500, and 5000 mg/kg BW. The WTE was administered only once (on day 0) at the beginning of the experiment.

The incidence of toxic effects in animals observed from the first four hours after the treatment period. The change of behavior, body weight, food intake, water intake, motoric activity, respiration and other death observed for 14 days. In the case of the mortality of the animals immediately dissected to see the possible causes. On the 15th day, all of the animals were sacrificed by an anesthesia (ether) after an overnight fasting. The liver, kidney, and heart were isolated and weighed. The relative organ weight (ROW) determined to diagnose injuries that occur in organs during treatment and calculated as follows.

Statistical Analysis

Statistical analysis determined as mean value ± standard deviation (SD). The data with normal distribution analyzed with one-way ANOVA followed by multiple comparisons using Bonferroni test. However, abnormal distribution analyzed with Kruskal-Wallis test. Probability level of less than 5% (p < 0.05) was considered significant.

RESULTS

No treatment-related toxic symptom or mortality observed for the first 4 h and 24 h after oral administration of WTE at a dose of 1250, 2500, and 5000 mg/kg BW. All the groups of mice did not show the significant changes in behavior, breathing, and motoric activity. However, the mortality found at day-1, more over 24 hours after administration of WTE, one male mice from the Group 1 and two female mice from the Group 2, but not in Group 3. The animals then immediately dissected to see the cause of the death by obvious observation of liver, kidney, and heart. There were no differences in relative organs weight and apparent observation of their vital organ compare to all of the mice which still alive until the end of observation. The absolute and relative organ masses of all treatment groups showed no significant differences (P > 0.05) compared to control group, (Table 1, 2, 3, and 4). There were no significant differences on obvious observation of vital organs between treatment and control groups, and the appearance seems normal texture (Figure 1 and 2).

Table 1: Average absolute organ weight of male mice

<table>
<thead>
<tr>
<th>Organ</th>
<th>Average weight *
Control</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2.10 ± 0.85</td>
<td>2.00 ± 0.08</td>
<td>2.08 ± 0.81</td>
<td>1.90 ± 0.49</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.22 ± 0.03</td>
<td>0.22 ± 0.03</td>
<td>0.23 ± 0.08</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>Heart</td>
<td>0.17 ± 0.06</td>
<td>0.17 ± 0.05</td>
<td>0.14 ± 0.05</td>
<td>0.12 ± 0.04</td>
</tr>
<tr>
<td>Average body on the sacrifice day</td>
<td>36.07 ± 3.83</td>
<td>32.25 ± 3.52</td>
<td>27.64 ± 4.06</td>
<td>25.24 ± 4.27</td>
</tr>
</tbody>
</table>

* P > 0.05 compared to control group

Table 2: Average absolute organ weight of female mice

<table>
<thead>
<tr>
<th>Organ</th>
<th>Average weight *
Control</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2.2 ± 0.44</td>
<td>1.92 ± 0.43</td>
<td>1.63 ± 0.38</td>
<td>2.2 ± 0.44</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.23 ± 0.06</td>
<td>0.2 ± 0.04</td>
<td>0.2 ± 0.05</td>
<td>0.23 ± 0.06</td>
</tr>
<tr>
<td>Heart</td>
<td>0.13 ± 0.06</td>
<td>0.16 ± 0.05</td>
<td>0.13 ± 0.06</td>
<td>0.13 ± 0.06</td>
</tr>
<tr>
<td>Average body on the sacrifice day</td>
<td>26.67 ± 3.35</td>
<td>25.04 ± 2.83</td>
<td>23.87 ± 3.79</td>
<td>23.48 ± 3.34</td>
</tr>
</tbody>
</table>

* P > 0.05 compared to control group

Table 3: Relative organ weight of male mice

<table>
<thead>
<tr>
<th>Organ</th>
<th>Relative organ weight*
Control</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>6.00 ± 3.07</td>
<td>5.98 ± 0.79</td>
<td>7.68 ± 3.37</td>
<td>7.43 ± 0.99</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.61 ± 0.15</td>
<td>0.72 ± 0.08</td>
<td>0.81 ± 0.18</td>
<td>0.76 ± 0.05</td>
</tr>
<tr>
<td>Heart</td>
<td>0.45 ± 0.12</td>
<td>0.60 ± 0.21</td>
<td>0.49 ± 0.12</td>
<td>0.48 ± 0.15</td>
</tr>
</tbody>
</table>

* P > 0.05 compared to control group

Table 4: Relative organ weight of male mice

<table>
<thead>
<tr>
<th>Organ</th>
<th>Relative organ weight*
Control</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>2.2 ± 0.43</td>
<td>1.92 ± 0.43</td>
<td>1.63 ± 0.38</td>
<td>1.70 ± 0.28</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.23 ± 0.06</td>
<td>0.2 ± 0.04</td>
<td>0.20 ± 0.05</td>
<td>0.16 ± 0.05</td>
</tr>
<tr>
<td>Heart</td>
<td>0.13 ± 0.06</td>
<td>0.16 ± 0.05</td>
<td>0.13 ± 0.06</td>
<td>0.10 ± 0.00</td>
</tr>
</tbody>
</table>

* P > 0.05 compared to control group
CONCLUSION

In conclusion, this study showed that the oral LD$_{50}$ of WTE was greater than 5000 mg/kg BW and suggests that the WTE is found to be safe in a single dose of level 5000 mg/kg BW. However, the safety of long-term use of white tea leaves especially in the treatment of the chronic disease should be confirmed with sub-acute toxicity study.

ACKNOWLEDGMENT

This work supported by PITTA Grant University of Indonesia. The authors thank all their colleagues for their great prestigious encouragement in accomplishing this task.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

ABBREVIATION USED

WTE: White tea leaf ethanolic extract; DDY: Deutschland, Denken and Yoken; BW: Body weight; OECD: Organization for Economic Co-opera-
REFERENCES

GRAPHICAL ABSTRACT

SUMMARY

• No treatment-related toxic symptom or mortality observed for the first 4 hours and 24 hours after oral administration of white tea leaf ethanolic extract in mice up to a dose of 5000 mg/kg BW.
• Both male and female treated mice showed no significant changes in behavior, breathing, and motoric activity.
• The oral LD50 of white tea leaf ethanolic extract was greater than 5000 mg/kg BW and suggests practically non-toxic in a single dose of level 5000 mg/kg BW.

ABOUT AUTHORS

Lia Ardiana: She is a magister student at the Faculty of Pharmacy, University of Indonesia. Her magister research focused on the evaluation of toxicity and antidiabetic activity of Indonesian herbal medicines.

Rani Sauriasari: working as lecturer and researcher in Faculty of Pharmacy, University of Indonesia. Her doctor degree obtained from Public Health (Medical Faculty), Okayama University, Japan. Currently, she is positioned as Manager of Research and Community Engagement, Faculty of Pharmacy, University of Indonesia. Has experience in the area of Biochemistry, Analytical Chemistry and Pharmacology, working mainly in: medicinal plants and new research drugs.

Meiliza Ekayanti: She is a researcher that focused on Phytochemistry at the Faculty of Pharmacy, University of Indonesia.

Sarah Zielda Najib: She is a researcher of medicinal plants activity at the Faculty of Pharmacy, University of Indonesia.

Berna Elya: She is Professor and researcher with the mainly area in isolation of new compound from medicinal plants, Pharmacognosy and Phytochemistry. Currently, she is positioned as lecturer and Head of Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Indonesia.