A Review on Ethnobotanical, Phytochemical and Pharmacological Profile of Pinus wallichiana A.B. Jacks.

Dwaipayan Sinha*

ABSTRACT

Introduction: Pinus wallichiana A.B. Jacks, or the blue pine is one of the important conifers that grows all along the Himalayan range from Afghanistan in the west to Myanmar and China in the east covering the Himalayan regions of Pakistan, Nepal and India. It is found in the upper region of the mountains and often remains associated with other gymnosperms. The plant is of immense ethnobotanical relevance and finds extensive use among the people inhabiting the mountainous region. They are primarily valued for its timber and used for construction and infrastructural purposes. Medicinally the plant is very much important. Throughout the Himalayan region the plant is used for the cure of a number of diseases including treatment of fever, cough and cold, bone fracture, healing of injury and wounds, rheumatic pain, arthritis, inflammations etc. The plant is rich in terpenoids and flavonoids all of which possess strong antioxidant properties. Methods: Extensive literature survey was made in the internet with pubmed, google scholar forming the search platform to illustrate the traditional usage of the plant among inhabitants of various regions of Himalayas. Informations of traditional usage, chemical constituents and selected pharmacological activities of the plant were pooled from available research papers to frame the review. Results and Outcome: In this review, an attempt has been made to compile the ethnobotanical usage of Pinus wallichiana, its phytochemistry and pharmacological activity highlighting its potentiality as a cheap and affordable source of drugs for the benefit of population of Indian subcontinent and adjoining areas. Key words: Terpenoids, Flavonoids, Conifer, Himalaya, Arthritis, Antioxidant.

INTRODUCTION

Pinus wallichiana A.B. Jackson or the blue pine is one of the species of Pinus that is native to Himalayan ranges, Karakoram range and Hindu Kush Mountains. The extensive and luxuriant growth of this plant is found all along the Himalayan ranges starting from eastern Afghanistan, extending all the way through Pakistan, Indian, Nepal, Bhutan, Myanmar and China with an altitudinal range from 1800 meters to 4300 meters. Globally the species is distributed between 68°E to 100°E longitudes and 25°N to 36°N latitudes. The plant prefers to grow in places with low temperature and occurs in regions having high altitude with low rainfall or low altitude with high rainfall either in form of pure or mixed forests. The plant may form a pioneer species in glacial forelands or may also form the primary species in old growth mixed forests along with Cedrus deodara , Picea smithiana, Abies pindrow in temperate region or may be associated with Betula utilis and Juniperus macropoda in altitudes beyond 3000 meters near the tree line. The plant prefers to grow on deep moist soils but may also adapt itself well on fertile, well drained sandy clay to sandy clay loamy soil. Pinus wallichiana is used mainly for timber and stands next to deodar in commercial importance. The sap wood is whitish while the heartwood is light pink to red having dark striations, resinous, straight, even grained with medium fine texture, soft and moderately heavy. The wood acts as a good source of fuel and yields good quality charcoal having calorific value of 4995. The timber is extensively used in making internal fittings of houses, planks, window frames and furniture. In addition to timber, the plant is also exploited for extracting oleoresins which is used for the production of turpentine oil, needle oil and camphor. The plant also finds immense medicinal value among different ethnic communities living in Himalayan region. The resin obtained from the plant is used for wounds and burnt wood called ‘Kaalo’ is used as antiseptic. The resin is mixed with honey and is used for wound healing, antiseptic, gonorrhea, abscess, ulcer and burning sensation. The fruits and latex of the plants are also applied topically for treating cuts and wounds. The resin also finds application in curing chaffing of heels and is also used with onion paste for treating wounds and cuts.

Thus based on the extensive ethnic usage pattern of the plant, an attempt has been made to summarize the various ethnomedicinal and ethnobotanical uses of Pinus wallichiana across various Himalayan regions. In addition to it, a detailed enlisting of various chemical constituents and biological activities of various plant parts have also been summarized in this paper with google scholar and pubmed forming the platform of literature search.

Morphology of the plant

Pinus wallichiana attains a height of more than 50 meters having a straight trunk and short down curved branches which are longer in solitary trees thereby creating a dome like structure (Figure 1A). The trunk is covered by bark which is smooth and resinous when young turning grey and corky with shallow fissures at maturity (Figure 1B). Leaves or needles are bluish green in colour occurring in cluster of five per fascicle and are 10 cm to 20 cm in...
length. Female cones are light brown at maturity and highly resinous. Female cones occur in groups of 1 to 6, 20 cm to 30 cm long. The cone is erect, bluish green when young and becomes pendant, light brown at maturity. The apophysis is pale brown in colour (Figures 1C & 1E). The male cones are ovoid or globose, short lived, comprising of scales or microsporophylls each bearing a pair of pollen sacs on the lower surface. The male cones are 8-10 x 3 mm in dimension. Seeds are ovoid, 6-10 X 5-6 mm in dimension having membranous wings of 1.5 to 3 cm in dimension.

TAXONOMIC CLASSIFICATION

Subclass: Pinidae
Order: Pinales
Family: Pinaceae
Genus: *Pinus*
Species: *wallichiana*

TRADITIONAL USE

Pinus wallichiana is deeply assembled within the culture and tradition of the people living in Himalayan and adjoining areas. The used by indigenous people for a variety of purpose which may be grossly divided into non-medicinal and medicinal uses. Non-medicinal uses include the use of plants for thatching and roofing, shelter, fuel wood, construction and infrastructural items and furniture. Medicinal uses include use of various parts of plant or resin for curing of various ailments such as healing, fever, bacterial diseases etc. The detailed non-medicinal and medicinal use of *Pinus wallichiana* by ethnic people residing in various regions of Himalaya and adjoining mountains are tabulated in Tables 1 and 2.

CHEMICAL CONSTITUENT

Chemical constituents of various plant parts of *Pinus wallichiana* have been worked out in details by various groups of researchers using different solvents and techniques for extraction and detection. It was observed that the essential oils from the needle and turpentine contains terpenes as the major constituent. The alcoholic extract of various parts of plant contains a wide array of compound namely hydrocarbons, terpene acids, organic acids, flavonoids, flavonoid glycosides, terpene alcohols etc. The detailed chemical constituent of various plant parts of *Pinus wallichiana* is tabulated in Table 3 and structure of selected chemical constituent is depicted in Figure 1.

ANTIOXIDANT ACTIVITY

The antioxidant activity of the plant is also studied by various groups of researchers. It has been reported in one study that the crude methanolic extract of leaves and fruits of *Pinus wallichiana* showed strong antioxidant activity when tested with ferric thiocyanate and thiobarbituric acid methods. The results from their study indicated that the leaves possess a free radical scavenging potential and a protective effect towards lipid peroxidation. The activity of the extract was greater

Table 1: Non-medicinal use of Pinus wallichiana A.B. Jacks.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Region</th>
<th>Vernacular name</th>
<th>Plant part and their uses</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bandipore District, Jammu and Kashmir, India</td>
<td>Chi</td>
<td>Seeds are eaten raw by children.</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>District Kinnaur, Himachal Pradesh, India</td>
<td>Chilam, Golda</td>
<td>The tree is used as fuel, timber and for making tools.</td>
<td>17</td>
</tr>
<tr>
<td>3.</td>
<td>Shimla Hills, Himachal Pradesh, India</td>
<td>Kail</td>
<td>The wood is used for timber. It yields excellent charcoal.</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>Kashmir Valley, Jammu and Kashmir, India</td>
<td>Kail, Kaeur, Kairo</td>
<td>The timber is used for making buildings, furniture, bridges, viaducts, railway sleepers, street paving blocks, carving, box boards, paper pulps etc. The oleoresin yields turpentine which is the starting material for production of light and heavy tar oil, turpentine pitch, pyroligneous acids and charcoal as residue.</td>
<td>19</td>
</tr>
<tr>
<td>5.</td>
<td>Kupwara, Kashmir, India</td>
<td>Kayar</td>
<td>The timber is used for making furniture, and houses. The wood and cones are used as firewoods. Charcoal is obtained from cone, branches and needles.</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Uttarakhand, India</td>
<td>Kail</td>
<td>The bark yields a black coloured dye.</td>
<td>21</td>
</tr>
<tr>
<td>6.</td>
<td>Tones Valley, Garhwal Himalaya, Uttarakhand, India</td>
<td>The Plant is used for household construction.</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Apatani Plateau, Arunachal Pradesh</td>
<td>Used as timber, fuel wood, handicrafts, housing and ritualistic material, food.</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Ayubia National Park and Miandam Valley, Pakistani Hindukush, Pakistan</td>
<td>Kail/ Peyoach</td>
<td>The stem is used for fuel and furniture.</td>
<td>24</td>
</tr>
<tr>
<td>9.</td>
<td>Malam Jabba, SWAT, Pakistan</td>
<td>Peoch</td>
<td>Plant is used as fuel wood and making of furniture.</td>
<td>25</td>
</tr>
<tr>
<td>10.</td>
<td>Malam Jabba Valley, Swat, Pakistan</td>
<td>Peoch</td>
<td>The plant is used as fuel wood, for making furniture.</td>
<td>26</td>
</tr>
<tr>
<td>11.</td>
<td>Utror and Gabral Valleys, District Swat, Pakistan</td>
<td>Peeuch</td>
<td>The tree finds use in timber and furniture industry, match industry, construction of bridges and as fuel wood. It finds use as decoration item.</td>
<td>27</td>
</tr>
</tbody>
</table>
Table 2: Ethnomedicinal use of *Pinus wallichiana* A.B. Jacks.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Region</th>
<th>Vernacular name</th>
<th>Plant part and their uses</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bangus Valley, Kashmir</td>
<td>Kayur</td>
<td>Resin, latex: Stems of plants produce latex called 'kangul' and is applied to heal cracks on heels.</td>
<td>46</td>
</tr>
<tr>
<td>2.</td>
<td>Jammu and Kashmir, India.</td>
<td>Kayud</td>
<td>Needles: Needles are fed to the cattle for cure from abdominal worms.</td>
<td>47</td>
</tr>
<tr>
<td>3.</td>
<td>Sophian forest area, Jammu and Kashmir, India.</td>
<td>Kayod</td>
<td>Used for the treatment of cut, wounds and fractures.</td>
<td>48</td>
</tr>
<tr>
<td>4.</td>
<td>Sankaracharya Hills, Jammu and Kashmir, India.</td>
<td>Kayur, Yar</td>
<td>Resin is used for the treatment of boils, cuts, cracked heels and wounds. It also acts as antiphlogistic and styptic. It is used for the treatment of influenza.</td>
<td>49</td>
</tr>
<tr>
<td>5.</td>
<td>Kupwara, Jammu and Kashmir, India.</td>
<td>Kayar</td>
<td>Latex produced from the stem is commonly called Kangul and is applied to heal cracked heels. It is also used to cure wounds and evacuation of pus.</td>
<td>50</td>
</tr>
<tr>
<td>6.</td>
<td>Kupwara, Kashmir, India</td>
<td>Kayar</td>
<td>The latex from stem called 'Kangul' is applied to heal cracked heels.</td>
<td>51</td>
</tr>
<tr>
<td>7.</td>
<td>District Kathua, Jammu and Kashmir, India.</td>
<td>Kail</td>
<td>Oleoresin is applied for the treatment of cracked heels.</td>
<td>52</td>
</tr>
<tr>
<td>8.</td>
<td>Kashmir Valley, Jammu and Kashmir, India.</td>
<td>Kail, Kaeur</td>
<td>The leaf oil is used for medicinal purposes. Leaves are weaved to prepare medicinal dress under clothing. The dark brown viscous and sticky substances called 'killam' is obtained from wood and is applied to arms and legs of farmers for protection against insect bites while working in waterlogged paddy fields.</td>
<td>19</td>
</tr>
<tr>
<td>9.</td>
<td>Khistwar, Jammu and Kashmir, India.</td>
<td>Chew</td>
<td>The resin from young saplings is used for the treatment of cuts and wounds in skin.</td>
<td>53</td>
</tr>
<tr>
<td>10.</td>
<td>Pabbar Valley, Shimla, Himachal Pradesh, India</td>
<td>Kail, Chila</td>
<td>Resins possess antiseptic properties and used to cure cuts, cracks in feet and wounds. Young shoots are used as bandage for treatment of broken joints of humans and cattle.</td>
<td>54</td>
</tr>
<tr>
<td>11.</td>
<td>Manali Wildlife Sanctuary, Himachal Pradesh, India</td>
<td>Kail</td>
<td>Used for the treatment of abscesses, dislocation of joints, ulcer and unconsciousness.</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 3: Chemical constituent of various plant part of *Pinus wallichiana* A.B. Jacks.

<table>
<thead>
<tr>
<th>Plant Part</th>
<th>Chemical constituents</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needle essential oil</td>
<td>α-Pinene (25.2%), β – Pinene (46.8%), Myrcene (9.5%), α – Terpinene (2.3%), Caryophyllene Oxide (2.1%), Trans Caryophyllene (1.8%), Limonene (1.0%), α - Cadinol (0.9%), Camphene (0.9%), α - Terpinyl acetate (0.8%), Delta-3-Carene (0.8%), α - Bisabolol (0.6%), α - Humulene (0.5%), α - Phellandrene (0.4%), δ - Cadinene (0.4%), Trans-pinocarveol (0.4%), Geranyl acetate (0.1%).</td>
<td>74</td>
</tr>
<tr>
<td>Needle essential oil</td>
<td>α – Thujeone (0.1%), Tricyclene(0.1%), α-Pinene (14.8%), α-Fenchene (0.3%), Camphene (1.0%), β – Pinene (34.0%), Myrcene (1.3%), α - Phellandrene (0.3%), α - Terpinene (0.6%), p-Cymene (0.1%), Limonene (17.8%), α - Pinene oxide (0.6%), Fenchone (0.1%), cis-Limonene oxide (0.3%), trans-Pinocarveol (2.1%), cis-Pinene hydrate (0.3%), trans-Verbolen (0.5%), Pinocarvone (1.3%), cis-Pinocamphone (0.4%), Terpinen-4-ol (0.2%), α-Terpineol (0.3%), Myrtalen (2.1%), Myrtenol (2.1%), Verbenone (0.3%), trans-Carveol (0.7%), Carvone (0.5%), Undecanone (0.7%), trans-Pinocarvylacetate (0.9%), cis-Pinocarvylacetate (1.9%).</td>
<td>75</td>
</tr>
<tr>
<td>Methanolic extract of needle</td>
<td>Dl-Glyceraldehyde dimer (1.38%), 1,2,3-Propanetriol (Glycerol)(1.64%), Octane, 2,4,6-trimethyl-(0.57%), 2,3-Dihydro-3,5-dihydroxy-6-methyl-4-bpyran-4-one (2.07%), Benzoic acid (0.59%), Dodecane (0.94%), 1,2,3-Propanetriol, 1-acetate (0.65%), Tetradecane (1.44%), Hexadecane (0.82%), 1,4,5-tetraydroxy-cyclohexane-carboxy (quinic acid) (0.95%), Ethyl alpha-d-gluco-pyranoside (0.83%), Mome inositol (43.27%), 10-methoxy-Nb-alpha-methylcorynantheol (0.56%), (1-butylcetyl) benzene (0.33%), Hexadecanoic acid, methyl ester (0.16%), 1,4-Dioxacyclohexadecane-5,16-dione (0.19%), Benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl)-4-hydro (0.35%), Pentadecanoic acid (4.12%), Dibutyl phthalate (3.34%), Ecosane (kosane) (0.14%), 3,7-Dihydroxy-3-phenyl-4-chromanone (0.22%), 9,12-octadecadienoic acid (Z, Z)- (1.23%), 9,12-octadecadienoic acid (linolelaidic acid) (12.52%), Octadecanonic acid (stearic acid) (1.14%), Ricinoleic acid (0.39%), 2,4a, 8-tetramethyl-decahydrolup-5-ene-1-oxo (viridiflorol) (2.42%), 1,4,4-trimethyl-8-methylene-1,5-cycloundecianiene (1.45%), 1-phenanthrenecarboxylic acid, 7-ethenyl-1,2,3,4,4a, 6, 5.6, (0.49%), Dehydroabietic acid (1.44%), Acetate, [β-acetoxy]-3,5,8-trimethyl-2-pyrophosphate-1-naphthalenyl methyl ester (1.25%), 1-phenanthrene-carboxylic acid, 7-ethenyl (levopimaric acid) (0.81%), 10-nonadecanol (0.54%), Stigmast-5-En-3-OL, (3 beta)- (B sitosterol) (0.78%), β-Sitosterol, β-Sitosterol 3-O-β-D-glucopyranoside, 5-Hydroxy-7-methoxy-2-(4-methoxy phenyl)-4H-chromen-4-one, Oleanonic acid.</td>
<td>77</td>
</tr>
</tbody>
</table>
Sinha.: A Review on Ethnobotanical, Phytochemical and Pharmacological Profile of Pinus wallichiana A.B. Jacks

<table>
<thead>
<tr>
<th>Plant Part</th>
<th>Chemical constituents</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanolic extract of needle</td>
<td>Isorhamnetin (2.857%), Quercetin (21.426%).</td>
<td>78</td>
</tr>
<tr>
<td>Diethyl ether extract of needle</td>
<td>Isorhamnetin (2.857%), Quercetin (5.712%).</td>
<td>78</td>
</tr>
<tr>
<td>Turpentine</td>
<td>α-Pinene (90.7%), Camphene (2.5%), β-Pinene/Sabinene/C11 (2.1%), Δ-3-Carene/myrcene (0.4%), α-Terpinene (0.1%), Limonene (0.5%), β-Phellandrene (0.1%), γ-Terpine (Trace), p-Cymene (0.2%), Terpinolene (0.4%), Longipine (0.3%), Cyclocisatine (Trace), Longicyclene (Trace), Sativene (Trace), Longifolene (0.6%), β-Caryophyllene/terpinen-4-ol (0.5%), Trans-β-Farnesene/α-humulene (0.1%), α-Terpineol/borneol (0.2%).</td>
<td>79</td>
</tr>
<tr>
<td>Resin Acid</td>
<td>Pimamic Acid (0.7%), Levopimamic Acid/Palustric Acid (9.7%), Isopimamic Acid (23.2%), Lambertianic Acid (20.5%), Dehydroabietic Acid (1.7%), Abietic Acid (31.5%), Neoabietic Acid (4.8%).</td>
<td>79</td>
</tr>
<tr>
<td>Lipophillic constituents of dry bark</td>
<td>C14:0 Acids (0.34 mg·g⁻¹), C16:0 Acids (1.01 mg·g⁻¹), C17:0 Acids (0.26 mg·g⁻¹), C18:1 Acids (5.40 mg·g⁻¹), C18:2 Acids (3.35 mg·g⁻¹), C18:3 Acids (0.52 mg·g⁻¹), C20:3 Acids (0.56 mg·g⁻¹), C22:0 Acids (0.25 mg·g⁻¹), C24:0 Acids (0.70 mg·g⁻¹), 1,2-dioic-22: acid (0.02 mg·g⁻¹), C22:0 alcohol (0.03 mg·g⁻¹), C24:0 alcohol (0.06 mg·g⁻¹), Thunbergene (0.02 mg·g⁻¹), Diterpene alcohol (0.21 mg·g⁻¹), Sandaracopimonic Acid (0.06 mg·g⁻¹), Isopimamic Acid (2.78 mg·g⁻¹), Palustric Acid (0.04 mg·g⁻¹), Dehydroabietic Acid (1.26 mg·g⁻¹), Abietic Acid (1.45 mg·g⁻¹), Neoabietic Acid (0.27 mg·g⁻¹), C24-5-Monoglyceride (0.06 mg·g⁻¹), Campesterol (0.08 mg·g⁻¹), Siosterol (0.92 mg·g⁻¹), Sitosterol glucopyranoside (1.49 mg·g⁻¹), Steryl esters (2.07 mg·g⁻¹), Triglycerides (2.31 mg·g⁻¹).</td>
<td>80</td>
</tr>
<tr>
<td>Hydrophillic constituent of dry bark</td>
<td>Sugars and sugar alcohols (70.0 mg·g⁻¹), 3,4-Dihydroxybenzoic Acid (0.66 mg·g⁻¹), Ferulates (4.78 mg·g⁻¹), Secoisolariresinol (0.14 mg·g⁻¹), Monomethyl Pinosylvin (0.48 mg·g⁻¹), Dihydro-monomethyl pinosylvin (0.04 mg·g⁻¹), Resveratrol glycoside (9.09 mg·g⁻¹), Catechin (5.78 mg·g⁻¹), Taxifolin derivative (2.11 mg·g⁻¹), Catechin and gallo catechin derivatives (11.0 mg·g⁻¹).</td>
<td>80</td>
</tr>
<tr>
<td>Methanol extract of bark</td>
<td>Kaempferol (2.30%), Rhamnetin (2.08%), Isorhamnetin (2.005%), Quercetin (5.009%), Myricetin (3.0%).</td>
<td>78</td>
</tr>
<tr>
<td>Diethyl ether extract of bark</td>
<td>Rhamnetin (2.08%), Isorhamnetin (1.847%).</td>
<td>78</td>
</tr>
<tr>
<td>Ethyl acetate extract of bark</td>
<td>Camphor (1.857%), Quercetin (5.001%).</td>
<td>78</td>
</tr>
</tbody>
</table>

![Figure 1: Pinus wallichiana A.B. Jacks: (A) Full grown trees in natural habitat, (B) Barks, (C) Unripe female cones, (D) Male Cones with vegetative leaves, (E) Ripe female cones with vegetative leaves.](image)
than Vitamin E and comparable to butylated hydroxy toluene taken as positive control.80 It was further observed that hydromethanolic extract and aqueous extract of the leaves showed free radical scavenging and nitric oxide scavenging activity. The hydrogen peroxide scavenging activities of the extracts were more than that of standard antioxidant ascorbic acid.83 The essential oil of \textit{Pinus wallichiana} exhibited free radical scavenging activity as evident from DPPH scavenging assays.74

ANTIMICROBIAL ACTIVITY

\textit{Pinus wallichiana} exhibits antimicrobial properties. It was observed that n-hexane fraction of ethanolic extract of needle inhibited the growth of fungus \textit{Microsporum cannis} with minimum inhibitory concentration of 25 μg.ml-1. In addition to it, the ethyl acetate fraction brought mortality of \textit{Tribolium castaneum}, \textit{Rhyzopertha dominica} and \textit{Callosobruchus analis} exhibiting a mortality range of (20-40) at a crude extract concentration of 20 mg per 2 ml of acetone.84 The needle essential oil also showed inhibitory activity against \textit{Fusarium verticillioides} with minimum inhibitory concentration of 40 ppm exhibiting 25% or less growth than that of the control.75 It was also reported that the hydromethanolic extract of the needles at concentration of 47.8 mg.ml-1 showed highest inhibitory activity against \textit{Pseudomonas aeruginosa} and \textit{Escherichia coli} with a zone of inhibition of 15.66 ± 1.1 mm and 14 ± 0.57 mm respectively.83 Additionally, the methanolic extract of the needles of the plant showed bactericidal activity against \textit{Bacillus subtilis}, \textit{Agrobacterium tumefaciens}, \textit{Xanthomonas phaseoli}, \textit{Erwinia chrysanthemi} and \textit{Escherichia coli} with activities ranging 54% and 81%.73 The antimicrobial activity of the plant is tabulated in Table 4.

ANTIPROLIFERATIVE ACTIVITY

The essential oil of \textit{Pinus wallichiana} exhibited a dose dependent antiproliferative activity against THP-1 (Leukemia), A-549 (Lung), HEP-2 (Liver), IGR-OV-1 (Ovary), PC-3 (Prostate) cell lines. The maximum anti-proliferative activity was obtained when the cell lines were treated with 100 μg.mL-1 of oil with IC50 values of 5.6 ± 1.4, 6.1 ± 0.8, 9.0 ± 1.5, 9.9 ± 1.9, 6.9 ± 1.2 respectively. These values were less than those of standard drugs Paclitaxel and Mitomycin-C taken as positive control.74

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Extract} & \textbf{Fungi} & \textbf{Bacteria} & \textbf{Insect} & \textbf{Reference} \\
\hline
Needle essential oil & \textit{Fusarium verticillioides}. & & & 75 \\
Hydro methanolic extract of needle & & & & 83 \\
n-Hexane fraction of ethanolic extract of needle & \textit{Microsporum cannis}. & \textit{Pseudomonas aeruginosa} and \textit{Escherichia coli}. & & 84 \\
Methanolic extract of needle & & & \textit{Tribolium castaneum}, \textit{Rhyzopertha dominica} and \textit{Callosobruchus analis}. & 85 \\
& & & \textit{Xanthomonas phaseoli}, \textit{Erwinia chrysanthemi} and \textit{Escherichia coli}. & \\
\hline
\end{tabular}
\caption{Antimicrobial activity of \textit{Pinus wallichiana} A.B. Jacks.}
\end{table}
CONCLUSION

The Himalayan mountain is one of the prominent biodiversity hotspots of the world and boasts a number of plants which are of direct use to the local people. The plants growing in the region play a major role in the life of the people living in the Himalayan region and are intricately acclimated in their culture and tradition. This has led to emergence of traditional remedies as an important aspect of their livelihood. It plays a major role in overall health care of the people living in far flung regions of the mountains where conventional health care facility are limiting. This paper projects detailed usage pattern of Pinus wallichiana growing in different sectors himalayan region. The plant is extensively used in both non medicinal and medicinal purposes. Though all parts aerial parts of the plants are utilised by the people for a variety of purposes, it is noted that in most cases resins and latex are exploited for cure of variety of ailments by local people. Investigations on the chemical constituents of various plant parts reveal the presence of various terpenoids and flavonoids most of which act as strong antioxidants. Additionally, the antioxidant, free radical scavenging activity and inhibition of lipid peroxidation of the plant have also been investigated by different groups of researchers with a positive outcome from their findings. Further the plant showed inhibitory activity towards fungi, bacteria and insects indicating its antimicrobial potential. The anticancer activity of the plant has also been established by its Antiproliferative activity.

To summarize, the popularity of the plant among local people of Himalayan region as herbal remedy may be due to the presence of terpenoids and flavonoids whose fundamental role is modulation of oxidative balance of the living system and inhibition of microbial activity. Though the plant is widely used by local people proper scientific investigation of its medicinal property is scarce. Thus, investigation of pharmacological activity based on the traditional usage pattern and development of drug through clinical trials would be an effective way of bio prospecting the plant for medicinal use. As the plant is plenty in the Himalayan region, it can act as a cheap source of raw material for development of drugs for efficient management of free radical induced diseases in and around Indian subcontinent.

REFERENCES

2. Rahman IU, Khan N, Ali K. Variability assessment of some morphological traits diseases in and around Indian subcontinent.
3. Rahman IU, Khan N, Ali K, Ahmad S. Vegetation-environment relationship in the Himalayan region, it can act as a cheap source of raw material for development of drugs for efficient management of free radical induced diseases in and around Indian subcontinent.

GRAPHICAL ABSTRACT

Pinus wallichiana A.B. Jacks.

Antioxidant Activity
- Free radical scavenging potential
- Inhibition of lipid peroxidation
- NO oxide scavenging potential
- Hydrogen peroxide scavenging potential

Antimicrobial Activity
- Inhibition of
 - Needle extract: Microsporum canina
 - Essential oil: Fusarium verticilloides
 - Needle extract: Pseudomonas aeruginosa, Escherichia coli, Xanthomonas phaseoli, Erwinia chrysanthemi, Bacillus subtilis.

Anticancer Activity
- Antiproliferative activity against THP-1 (Leukemia), A-549 (Lung), HEP-2 (Liver), IGR-OV-1 (Ovary), PC-3 (Prostate) cell lines.

Medicinal Properties
- Antispetic
- Diaphoretic
- Diuretic
- Antirheumatic
- Antiphlogistic
- Styptic

Medicinal Uses
- Resins: Used to cure cuts and abscesses.
- Bark: Used for the treatment of stomach ache and inflammation
- Leaf: Decoction used for treatment of gonorrhoea

Non-medicinal Uses
- Thatching and roofing
- Fulewood
- House building
- Dye yielding
- Charcoal making
- Soap and wax making

ABOUT AUTHORS

Dwaipayan Sinha: The author has done his graduation from prestigious Presidency University, Kolkata (then Presidency College) in Botany securing rank in University. He has done his masters from the esteemed department of Botany, University of Delhi, India with specialization in molecular biology and genetics. The author has done his doctorate from CSIR-Indian Institute of Toxicology Research, Lucknow, India on antioxidants using gymnosperm as model system. The author has more than 15 years research experience in gymnosperm, antioxidants, phytochemistry, plant natural products, nutraceuticals and Ethnobotany. The author has done extensive research in various gymnosperm belts of Indian Himalayas and has published several papers in peer reviewed journals. The author is a faculty in Department of Botany, Government General Degree College, Mohanpur, Paschim Medinipur under West Bengal Education Service, Government of West Bengal and has more than 10 years teaching experience to his credit.