In vitro Antidiabetic Activity of Methanolic Leaf Extract of *Indianthus virgatus* (Roxb.) Suksathan and Borchs by Glucose Uptake Method

Sangeetha D N^{1,*}, S. Rajamani²

ABSTRACT

Sangeetha D N^{1,*}, S. Rajamani²

¹Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, INDIA. ²Associate Professor, Department of Botany, St. Josephs' Post Graduate and Research Centre, Bengaluru, Karnataka, INDIA.

Correspondence

Sangeetha D N

St. Joseph's Post Graduate and Research Centre, Langford road, Bengaluru, Karnataka, INDIA

Tel. +919632003216

E-mail: sangetha_dn@yahoo.co.in History

- Submission Date: 29-03-2019;
- Review completed: 08-04-2019;
- Accepted Date: 15-04-2019.

DOI: 10.5530/pj.2019.11.106

Article Available online

http://www.phcogj.com/v11/i4

Copyright

© 2019 Phcogj.Com. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Medicinal plants play a key role to cure many diseases from time immemorial. The usage of medicinal plants in traditional medicinal system is the vital process of India. Diabetes Mellitus is a systemic metabolic disease characterized by hyperglycemia, abnormal elevated levels of lipid and fat in blood and hypoinsulinaemia. The current epidemic of diabetes indicates the need of proper and effective medications that are limited in their potency to have many side effects. Thus, introduction of alternative and complementary medicine is now in picture. Objective: The main objective of this work is to evaluate the in vitro anti diabetic activity of methanolic extracts of Indianthus virgatus (Roxb.) Suksathan and Borchs in skeletal muscle cell line. Methods: The in vitro cytotoxicity was performed for leaf extract (Methanol) on L-6 (Rat skeletal muscle) cell line to find toxic concentration of the leaf extract by MTT assay. Glucose uptake activity of test substance was determined in differentiated L-6 cells. **Results:** In Glucose uptake assay, Methanol Extract exhibited moderate toxicity to skeletal muscle cell line and glucose uptake assay it shows dose dependent glucose uptake. Glucose uptake rate increased with the increasing concentration of the leaf extract. Conclusion: The results of the current study clearly demonstrated the antidiabetic potency of methanolic leaf extract obtained from Indianthus virgatus (Roxb.) Suksathan and Borchs. under in vitro model.

Key words: Indianthus virgatus (Roxb.) Suksathan and borchs, Methanolic leaf extract, L-6 cell line, MTT assay, Antidiabetic activity, In vitro cytotoxicity, Skeletal muscle Cell Lines, Therapeutic agents.

INTRODUCTION

Diabetes Mellitus is an established noncommunicable disease and often described as fourth or fifth leading cause of mortality in high income countries.1 According to World Health Organization, the global prevalence of diabetes is estimated to increase from 4% in 1995 to 5.4% by the year 2025 majorly in the developing countries. India presently has the largest number of diabetic patients in the world and has been infamously known as the diabetic capital of the world.² The classical symptoms of type 1 diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger) and weight loss. In recent years, drug therapies have been in use for the treatment of diabetes. Some of the standard synthetic drugs used for the treatment of diabetes are sulfonylureas, biguanides, α-glucosidase inhibitors, glinides, etc. These drugs tend to cause side effects like nausea, vomiting, abdominal pain, diarrhea, head ache, abnormal weight gain, allergic reaction, low blood glucose, dark urine, fluid retention, or swelling. Moreover, they are not safe for use during pregnancy.3 Thus, the management of diabetes without any side effects is still a challenge. There is continuous search for alternative drugs.⁴ As a result of the global epidemic of diabetes, the limited potency and many side effects of medications currently in use, the need for new diabetes therapies

is expected to grow dramatically during the next decade. An intense research has been conducted to identify new therapeutic targets and pharmacologic compounds that might correct the impaired glucose tolerance. During the recent years many investigators have shown that natural products are a potential source for new drug candidates for many diseases in general and diabetes in particular. It is estimated that more than thousand plant species are being used as folk medicine for diabetes.5 Herbal products or plant products are rich in flavonoids, phenolic compounds, coumarins, terpenoids and other constituents which help to reduce blood glucose levels.6 Herbal drugs are prescribed due to their good effectiveness, fewer side effects in clinical experience and relatively low costs.7 Active research has been performed on traditionally available medicinal plants for the discovery of new antidiabetic drug as an alternative.8

Indianthus virgatus (Roxb.) Suksathan and Borchs. belonging to the family Marantaceae is locally known as 'Malamkoova'. *Schumannianthus virgatus* (Roxb.) Rolfe is a synonym of this plant. It is an erect herb of 4cm height with tuberous root stock. It has a compound leaf cluster on top of cane like stem. It is distributed in South India and Sri- Lanka. In Kerala, the plants are abundant in Western Ghats. It is used by the Kurichar tribes to treat skin diseases.⁹ It is also used by tribal healers of Kerala to treat jaundice.¹⁰ The present study framed to investigate the *in-vitro*

Cite this article: Sangeetha D N, S Rajamani. *In vitro* Antidiabetic Activity of Methanolic Leaf Extract of *Indianthus virgatus* (Roxb.) Suksathan and Borchs by Glucose Uptake Method. Pharmacog J. 2019;11(4):674-7.

antidiabetic activity of methanolic leaf extract of *Indianthus virgatus* (Roxb.) Suksathan and Borchs. by glucose uptake method.

MATERIALS AND METHODS

Collection and extraction of plant material

Fresh leaves of *Indianthus virgatus* (Roxb.) Suksathan and Borchs. was collected from Palode, Kerala, India and authenticated by Foundation for Revitalisation of Local Health Traditions herbarium, Bangalore, India. Leaves were cleaned and dried at room temperature for a period of 25 days under shade. Finely ground dried leaves were weighed and extracted using Soxhlet apparatus by using solvent methanol.

Outline of the method

The *in vitro* cytotoxicity was performed for leaf extract (Methanol) on L-6 (Rat skeletal muscle) cell line to find toxic concentration of the extract by MTT assay.

Preparation of test solution

For cytotoxicity studies, 10 mg of the test substance was dissolved separately and volume was made up with DMEM-HG supplemented with 2% inactivated FBS to obtain a stock solution of1 mg/ml concentration and sterilized by $0.22 \,\mu$ syringe filtration. Serial two-fold dilutions were prepared from this for carrying out cytotoxic studies.

Cell line and culture medium

L-6 (Rat skeletal muscle) cell line was procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cells were cultured in their respective media viz., DMEM-HG supplemented with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/ml), streptomycin (100 g/ml) and amphotericin B (5 g/ml) in an humidified atmosphere of 5% CO2 at 37°C until confluent. The cells were dissociated with TPVG solution (0.2% trypsin, 0.02% EDTA, 0.05% glucose in PBS). The stock cultures were grown in 25 cm² culture flasks and all experiments were carried out in 96 well microtitre plates (Figure 1).

Cytotoxicity studies

The monolayer cell culture was trypsinized and the cell count was adjusted to100,000 cells/ml using respective media viz., DMEM-HG containing 10% FBS. To each well of the 96 well microtitre plate, 0.1

ml of the diluted cell suspension was added. After 24 h, when a partial monolayer was formed, the supernatant was flicked off, monolayer washed once with medium and 100 μ l of different test concentrations of test substances were added on to the partial monolayer in microtitre plates. The plates were then incubated at 37°C for 72 h in 5% CO2 atmosphere and microscopic examination was carried out and observations were noted every 24 h interval (Table 1).

MTT assay

After 72 h incubation, the drug solutions in the wells were discarded and 50 μ l of MTT in PBS was added to each well. The plates were gently shaken and incubated for 3 h at 37°C in 5% CO₂ atmosphere. The supernatant was removed and 100 μ l of propanol was added and the plates were gently shaken to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 540 nm. The percentage growth inhibition was calculated using the standard formula and concentration of test substance needed to inhibit cell growth by 50% (CTC50) values was generated from the doseresponse curves for each cell line.¹¹

In vitro glucose uptake assay

Glucose uptake activity of test substance was determined in differentiated L-6 cells. In brief, the 24 hr cell cultures with 70-80% confluency in 40mm petri plates were allowed to differentiate by maintaining in DMEM with 2% FBS for 5-7 days. The extent of differentiation was established by observing multi nucleation of cells. The differentiated cells were serum starved over night and at the time of experiment cells were washed with HEPES buffered Krebs Ringer Phosphate solution (KRP buffer) once and incubated with KRP buffer with 0.1% BSA for 30 min at 37°C. Cells were treated with different non-toxic concentrations of test and standard drugs for 30 min along with negative controls at 37°C. 20 µl of D-glucose solution was added simultaneously to each well and incubated at 37°C for 30 min. After incubation, the uptake of the glucose was terminated by aspiration of solutions from wells and washing thrice with ice-cold KRP buffer solution. Cells were lysed with 0.1 M NaOH solution and an aliquot of cell lysates were used to measure the cell-associated glucose. The glucose levels in cell lysates were measured using glucose assay kit (ERBA).12 Two independent experimental values in duplicates were taken to determine the percentage enhancement of glucose uptake over controls (Table 2).

Table 1: Cytotoxic properties of test substance against L-6 cell line.

Sl. No	Name of Test Substance	Test Conc. (g/ml)	% Cytotoxicity	CTC50 (g/ml)
1.	Leaf extract (methanol)	1000	63.79±5.4	528.09±4.1
		500	49.17±0.4	
		250	24.34±0.4	
		125	7.21±0.4	
		62.5	3.97±0.5	
		31.25	$1.94{\pm}0.4$	
		15.6	0.81±0.2	
		7.8	0.28±0.2	

Table 2: In vitro glucose uptake studies for test substance in L-6 cell line.

on L-6 cell line

RESULTS AND DISCUSSION

Management of Diabetes Mellitus is a global problem. Successful treatment is very important for preventing or at least delaying the onset of long-term complications. Regulation of glucose level in the blood of the diabetic patient can prevent the various complications associated with the disease. The maintenance of plasma glucose concentration for a long term under a variety of dietary conditions is one of the most important and closely regulated processes observed in the mammalian species.¹³ Through nature, drugs are available in the form of herbal medicines with very minimal adverse effects when compared to the available synthetic drugs to treat such chronic diseases and disorders. Such herbal drugs as therapeutic agents are a nature's boon when compared to the severe adverse effects of the allopathic medical practice for diabetes. Despite the fact that the search for a complete and permanent cure for the disease is being pursued uncompromisingly by eluding physicians and researchers, many Indian Herbal Medicinal Plants have been noticed to be used successfully in managing Diabetes Mellitus and delaying or preventing its complications.

The ability of the cells to survive a toxic insult has been the basis of most cytotoxicity assays. It depends both on the number of viable cells and on the mitochondrial activity of cells.

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay is based on the assumption that dead cells or their products do not reduce tetrazolium. Tetrazolium salts are reduced only by metabolically active cells. Thus MTT can be reduced to a blue colored formazan by mitochondrial enzyme succinate dehydrogenase. The amount of formazan produced is directly proportional to the number of active cells.¹⁴

In the present study, the methanolic extract of the leaf of *Indianthus virgatus* (Roxb.) Suksathan and Borchswere screened using MTT for its cytotoxicity against L6 cell line at different concentrations to determine the CTC50 value.

The cytotoxicity of the methanolic extract leaf of *Indianthus virgatus* (Roxb.) Suksathan and Borchs was found to be dose dependent. The methanolic extract of this leaf did not confer any significant lethality to the healthy L6 cell line with a CTC50 value greater than 528.09 \pm 4.1 confirming the safe nature of the extract. Thus, methanol extract exhibited moderate toxicity to skeletal muscle cell line.

Skeletal muscle is the primary responsible site for postprandial glucose use and it is the most abundant tissue in the whole body. Defects in insulin-stimulated skeletal muscle glucose uptake are common pathological states in Type 2 diabetes (noninsulin-dependent Diabetes Mellitus).

In the present study, methanolic leaf extract of *Indianthus virgatus* (Roxb.) Suksathan and Borchs were evaluated for its *in vitro* anti diabetic activity by glucose uptake method in skeletal muscle cell line. The test substance was evaluated for its *in vitro* anti diabetic activity by glucose uptake method in skeletal muscle cell line. In Glucose uptake assay, Methanol Extract exhibited moderate toxicity to skeletal muscle cell line and glucose uptake assay it shows dose dependent glucose uptake by 61.95 ± 3.87 and 34.62 ± 0.58 at 200 and 100 g/ml, respectively over control. Glucose uptake rate increased with the increasing concentration of the leaf extract.

CONCLUSION

The results of the current study clearly demonstrated the antidiabetic potency of methanolic leaf extract obtained from *Indianthus virgatus* (Roxb.) Suksathan and Borchs. under *in vitro* model. We can therefore conclude from this study that this plant may essentially contain herbal bioactive compounds which require further structural elucidation and characterization methodologies to identify the bioactive constituents. However, *in vivo* studies have to be carried out to substantiate the *in vitro* results by employing different *in vivo* models and clinical trials for their effective utilization as therapeutic agent.

ACKNOWLEDGEMENT

The authors are grateful to Bharathiar University, Research and Development centre, Coimbatore, Tamil Nadu and St. Joseph's Post Graduate and Research Centre, Langford Road, Bengaluru, Karnataka, India and for providing necessary support, guidance and facilities to do the research.

CONFLICTS OF INTEREST

The authors have no conflict of interest.

ABBREVIATIONS

FBS: Fetal Bovine Serum; C: Degree Centigrade; %: Percentage; gm: Gram; hr: Hour; mg: Milli Gram; mL: Millilitre; nm: Nano Meter; μl: Micro Litre; μg: Micro Gram; MTT: 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide; TPVG: Trypsin Phosphate Versene Glucose Solution; DMEM: Dulbecco's Minimum Essential Media; DMSO: Dimethyl Sulfoxide; CTC50: Cytotoxicity Concentration; EDTA: Ethylenediaminetetraacetic Acid.

REFERENCES

- Kerekou A, Zoumenou E, Agbantey M, Tiomon C, Amoussou-Guenou D, Djrolo F, et al. Study of the management of diabetic metabolic emergency in the national teaching hospital HKM of cotonou. J Diabetes Mellitus. 2014;4:359-70.
- Abirami N, Natarajan B. Isolation and characterization of (4z,12z)cyclopentadeca-4, 12- dienone from indian medicinal plant grewiahirsuta and its hyperglycemic effect on 3t3 and I6 cell lines. Int J Pharm Biol Sci. 2014;6:393-8.
- Anbu N, Musthafa M, Velpandian V. Anti-diabetic activity of polyherbal formulationaavaraiyathichurnamin alloxan induced diabetic rats. Int J Toxicol Pharmacol Res. 2012;4:77-80.
- Amin IM. Hypoglyclemic effects in response to abelmoshusesculentus treatment: a research framework using stz-induced diabetic rats. Int J Biosci Biochem Bioinforma. 2011;1:63-7.
- Bhandari MR, Anurakkun NJ, Hong G, Kawabata J. Alpha glucosidase and alpha amylase inhibitory activities of nepalese medicinal herb pakhanbhed (bergenia ciliata, haw). Food Chem. 2008;106:247-52.
- Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13:1-16.
- Ren J, Gintant GA, Miller RE, Davidoff AJ. High extracellular glucose impairs cardiac E-C coupling in a glycosylation-dependent manner Am J Physiol. 1997;273(6 Pt 2):H2876-83.
- Sample
 Concentration (µg/ml)
 Glucose uptake over control

 Methanol leaf extract
 200
 61.95±3.87

 100
 34.62±0.58

 Indianthus virgatus (Rexb.) Suksathan and Borchs
 In vitro glucose uptake studies for test substance in L-6 cell line

 Indianthus virgatus (Rexb.) Suksathan and Borchs
 In vitro glucose uptake studies for test substance in L-6 cell line

- Weksler-Zangen S, Mizrahi T, Raz I, Mirsky N. Glucose tolerance factor extracted from yeast: oral insulin-mimetic and insulin-potentiating agent: *in vivo* and *in vitro* studies. Br J Nutr. 2012;108:875-82.
- Binu T, Rajendran A. Less known ethnomedicinal plants used by Kurichar tribe of Wayanad District, Southern Western Ghats Kerala, India. BRI. 2013;6(2):32-5.
- Neethu V, Latha PG, Suja SR, Vilash V, Ragesh R, Shoumya S, *et al.* Hepatoprotective property of schumannianthus virgatus (roxb.) rolfe against d- galactosamine induced hepatotoxicity in wistar rats. Int J Adv Res. 2017;5(7):2301-07.
- Francis D, Rita L. Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods. 1986;89:271-77.
- Takigawa-Imamura H, Sekine T, Murata M, Takayama K, Nakazawa K, Nakagawa J. Stimulation of glucose uptake in muscle cells by prolonged treatment with scriptide, a histone deacetylase inhibitor. Biosci Biotechnol Biochem. 2003;67(7):1499-506.
- Srividya AR, Shalom A, Chandrasekhar R, Vijayan P, Vishnuvarthtan VJ. Cytotoxic, antioxidant and antimicrobial activity of polygonum chinensis linn. Int J Pharm Sci Nanotech. 2012;4(4):1569-574.
- Asokan A, Thangavel M. *In vitro* cytotoxic studies of crude methanolic extract of Saracaindica bark extract. IOSR-JPBS. 2014;9(4):26-30.

SUMMARY

Skeletal muscle is a major tissue involved in glucose uptake. The L-6 cell line is the best characterized cellular model for glucose uptake because they have been used extensively to elucidate the mechanism of glucose uptake in muscle. The test substance according to CTC50 was evaluated for their *in vitro* anti diabetic activity in skeletal muscle cell line. A dose dependent stimulated glucose uptake by test substance to the cell surface was estimated; where test substance Leaf extract exhibited glucose uptake by 61.95 \pm 3.87and 34.62 \pm 0.58 at 200 and 100 g/ml, respectively over control.

ABOUT AUTHORS

GRAPHICAL ABSTRACT

Sangeetha D N, Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.

Dr. S. Rajamani Associate Professor, Department of Botany, St. Josephs' Post Graduate and Research Centre, Bengaluru, Karnataka, India.

Cite this article: Sangeetha D N, S Rajamani. *In vitro* Antidiabetic Activity of Methanolic Leaf Extract of *Indianthus virgatus* (Roxb.) Suksathan and Borchs by Glucose Uptake Method. Pharmacog J. 2019;11(4):674-7.