

In vitro Antidiabetic Activity of Methanolic Leaf Extract of Indianthus virgatus (Roxb.) Suksathan and Borchs by Glucose Uptake Method

Sangeetha D N¹,*, S. Rajamani²

¹Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, INDIA.
²Associate Professor, Department of Botany, St. Joseph’s Post Graduate and Research Centre, Bengaluru, Karnataka, INDIA.

Correspondence

Sangeetha D N
St. Joseph's Post Graduate and Research Centre, Langford road, Bengaluru, Karnataka, INDIA
Tel. +919632003216
E-mail: sangeetha_dn@yahoo.co.in

ABSTRACT

Medicinal plants play a key role to cure many diseases from time immemorial. The usage of medicinal plants in traditional medicinal system is the vital process of India. Diabetes Mellitus is a systemic metabolic disease characterized by hyperglycemia, abnormal elevated levels of lipid and fat in blood and hypoinsulinaemia. The current epidemic of diabetes indicates the need of proper and effective medications that are limited in their potency to have many side effects. Thus, introduction of alternative and complementary medicine is now in picture.

Objective: The main objective of this work is to evaluate the *in vitro* anti diabetic activity of methanolic extracts of *Indianthus virgatus* (Roxb.) Suksathan and Borchs in skeletal muscle cell line. **Methods:** The *in vitro* cytotoxicity was performed for leaf extract (Methanol) on L6 (Rat skeletal muscle) cell line to find toxic concentration of the leaf extract by MTT assay. Glucose uptake activity of test substance was determined in differentiated L6 cells. **Results:** In Glucose uptake assay, Methanol Extract exhibited moderate toxicity to skeletal muscle cell line and glucose uptake assay it shows dose dependent glucose uptake. Glucose uptake rate increased with the increasing concentration of the leaf extract. **Conclusion:** The results of the current study clearly demonstrated the antidiabetic potency of methanolic leaf extract obtained from *Indianthus virgatus* (Roxb.) Suksathan and Borchs. under *in vitro* model.

Key words: *Indianthus virgatus* (Roxb.) Suksathan and borchs, Methanolic leaf extract, L6 cell line, MTT assay, Antidiabetic activity, In vitro cytotoxicity, Skeletal muscle Cell Lines, Therapeutic agents.

INTRODUCTION

Diabetes Mellitus is an established non-communicable disease and often described as fourth or fifth leading cause of mortality in high income countries. According to World Health Organization, the global prevalence of diabetes is estimated to increase from 4% in 1995 to 5.4% by the year 2025 majorly in the developing countries. India presently has the largest number of diabetic patients in the world and has been infamously known as the diabetic capital of the world.² The classical symptoms of type 1 diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger) and weight loss. In recent years, drug therapies have been in use for the treatment of diabetes. Some of the standard synthetic drugs used for the treatment of diabetes are sulfonylureas, biguanides, α-glucosidase inhibitors, glinides, etc. These drugs tend to cause side effects like nausea, vomiting, abdominal pain, diarrhea, head ache, abnormal weight gain, allergic reaction, low blood glucose, dark urine, fluid retention, or swelling. Moreover, they are not safe for use during pregnancy.¹ Thus, the management of diabetes without any side effects is still a challenge. There is continuous search for alternative drugs.⁴ As a result of the global epidemic of diabetes, the limited potency and many side effects of medications currently in use, the need for new diabetes therapies is expected to grow dramatically during the next decade. An intense research has been conducted to identify new therapeutic targets and pharmacologic compounds that might correct the impaired glucose tolerance. During the recent years many investigators have shown that natural products are a potential source for new drug candidates for many diseases in general and diabetes in particular. It is estimated that more than thousand plant species are being used as folk medicine for diabetes.² Herbal products or plant products are rich in flavonoids, phenolic compounds, coumarins, terpenoids and other constituents which help to reduce blood glucose levels.² Herbal drugs are prescribed due to their good effectiveness, fewer side effects in clinical experience and relatively low costs.² Active research has been performed on traditionally available medicinal plants for the discovery of new antidiabetic drug as an alternative.⁹

Indianthus virgatus (Roxb.) Suksathan and Borchs. belonging to the family Marantaceae is locally known as ’Malamkoova’. *Schemananththus virgatus* (Roxb.) Rolfe is a synonym of this plant. It is an erect herb of 4cm height with tuberous root stock. It has a compound leaf cluster on top of cane like stem. It is distributed in South India and Sri- Lanka. In Kerala, the plants are abundant in Western Ghats. It is used by the Kurichar tribes to treat skin diseases.³ It is also used by tribal healers of Kerala to treat jaundice.¹⁰ The present study framed to investigate the *in vitro*...
antidiabetic activity of methanolic leaf extract of *Indianthus virgatus* (Roxb.) Suksathan and Borches by glucose uptake method.

MATERIALS AND METHODS

Collection and extraction of plant material

Fresh leaves of *Indianthus virgatus* (Roxb.) Suksathan and Borches was collected from Palode, Kerala, India and authenticated by Foundation for Revitalisation of Local Health Traditions herbarium, Bangalore, India. Leaves were cleaned and dried at room temperature for a period of 25 days under shade. Finely ground dried leaves were weighed and extracted using Soxhlet apparatus by using solvent methanol.

Outline of the method

The *in vitro* cytotoxicity was performed for leaf extract (Methanol) on L-6 (Rat skeletal muscle) cell line to find toxic concentration of the extract by MTT assay.

Preparation of test solution

For cytotoxicity studies, 10 mg of the test substance was dissolved separately and volume was made up with DMEM-HG supplemented with 2% inactivated FBS to obtain a stock solution of mg/ml concentration and sterilized by 0.22 μ syringe filtration. Serial two-fold dilutions were prepared from this for carrying out cytotoxicity studies.

Cell line and culture medium

L-6 (Rat skeletal muscle) cell line was procured from National Centre for Cell Sciences (NCCS), Pune, India. Stock cultures were maintained in their respective media viz., DMEM-HG supplemented with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/ml), streptomycin (100 g/ml) and amphotericin B (5 g/ml) in an humidified atmosphere of 5% CO2 at 37°C until confluent. The cells were dissociated with TPVG phosphate solution (0.2% trypsin, 0.02% EDTA, 0.05% glucose in PBS). The stock cultures were grown in 25 cm2 culture flasks and all experiments were carried out in 96 well microtitre plate (Figure 1).

Cytotoxicity studies

The monolayer cell culture was trypsinized and the cell count was adjusted to 100,000 cells/ml using respective media viz., DMEM-HG containing 10% FBS. To each well of the 96 well microtiter plate, 0.1 ml of the diluted cell suspension was added. After 24 h, when a partial monolayer was formed, the supernatant was flicked off, monolayer washed once with medium and 100 μl of different test concentrations of test substances were added to the partial monolayer in microtitre plates. The plates were then incubated at 37°C for 72 h in 5% CO2 atmosphere and microscopic examination was carried out and observations were noted every 24 h interval (Table 1).

MTT assay

After 72 h incubation, the drug solutions in the wells were discarded and 50 μl of MTT in PBS was added to each well. The plates were gently shaken and incubated for 3 h at 37°C in 5% CO2 atmosphere. The supernatant was removed and 100 μl of propanol was added and the plates were gently shaken to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 540 nm. The percentage growth inhibition was calculated using the standard formula and concentration of test substance needed to inhibit cell growth by 50% (CTC50) values was generated from the dose-response curves for each cell line.

In vitro glucose uptake assay

Glucose uptake activity of test substance was determined in differentiated L-6 cells. In brief, the 24 hr cell cultures with 70-80% confluency in 40mm petri plates were allowed to differentiate by maintaining in DMEM with 2% FBS for 5-7 days. The extent of differentiation was established by observing multi nucleation of cells. The differentiated cells were serum starved over night and at the time of experiment cells were washed with HEPES buffered Krebs Ringer Phosphate solution (KRP buffer) once and incubated with KRP buffer with 0.1% BSA for 30 min at 37°C. Cells were treated with different non-toxic concentrations of test and standard drugs for 30 min along with negative controls at 37°C. 20 μl of D-glucose solution was added simultaneously to each well and incubated at 37°C for 30 min. After incubation, the uptake of the glucose was terminated by aspiration of solutions from wells and washing thrice with ice-cold KRP buffer solution. Cells were lysed with 0.1 M NaOH solution and an aliquot of cell lysates were used to measure the cell-associated glucose. The glucose levels in cell lysates were measured using glucose assay kit (ERBA). Two independent experimental values in duplicates were taken to determine the percentage enhancement of glucose uptake over controls (Table 2).

![Figure 1: Cytotoxicity of test substance on L-6 cell line.](Image)

Table 1: Cytotoxic properties of test substance against L-6 cell line.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name of Test Substance</th>
<th>Test Conc. (g/ml)</th>
<th>% Cytotoxicity</th>
<th>CTC50 (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Leaf extract (methanol)</td>
<td>1000</td>
<td>63.79±5.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>49.17±0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>24.34±0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125</td>
<td>7.21±0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>62.5</td>
<td>3.97±0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.25</td>
<td>1.94±0.4</td>
<td>528.09±4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.6</td>
<td>0.81±0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.8</td>
<td>0.28±0.2</td>
<td></td>
</tr>
</tbody>
</table>
The cytotoxicity of the methanolic extract leaf of *Indianthus virgatus* (Roxb.) Sukathan and Borchs were found to be dose dependent. The methanolic extract of this leaf did not confer any significant lethality to the healthy L6 cell line at different concentrations to determine the CTC50 value. The cytotoxicity of the methanolic extract leaf of *Indianthus virgatus* (Roxb.) Sukathan and Borchs were found to be dose dependent. The methanolic extract of this leaf did not confer any significant lethality to the healthy L6 cell line at different concentrations to determine the CTC50 value.

The results of the current study clearly demonstrated the antidiabetic potency of methanolic leaf extract obtained from *Indianthus virgatus* (Roxb.) Sukathan and Borchs, under in vitro model. We can therefore conclude from this study that this plant may essentially contain herbal bioactive compounds which require further structural elucidation and characterization methodologies to identify the bioactive constituents. However, in vivo studies have to be carried out to substantiate the in vitro results by employing different in vivo models and clinical trials for their effective utilization as therapeutic agent.

The authors are grateful to Bharathiar University, Research and Development centre, Coimbatore, Tamil Nadu and St. Joseph’s Post Graduate and Research Centre, Langford Road, Bengaluru, Karnataka, India and for providing necessary support, guidance and facilities to do the research.

The authors have no conflict of interest.
REFERENCES

GRAPHICAL ABSTRACT

SUMMARY

Skeletal muscle is a major tissue involved in glucose uptake. The L6 cell line is the best characterized cellular model for glucose uptake because they have been used extensively to elucidate the mechanism of glucose uptake in muscle. The test substance according to CTC50 was evaluated for their in vitro anti diabetic activity in skeletal muscle cell line. A dose dependent stimulated glucose uptake by test substance to the cell surface was estimated; where test substance Leaf extract exhibited glucose uptake by 61.95 ± 3.87and 34.62 ± 0.58 at 200 and 100 g/ml, respectively over control.

ABOUT AUTHORS

Sangeetha D N, Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.

Dr. S. Rajamani Associate Professor, Department of Botany, St. Josephs’ Post Graduate and Research Centre, Bengaluru, Karnataka, India.