ABSTRACT

Introduction: Momordica charantia L., Curcurbitaceae, is a pantropical food and medicinal plant. The plant is included in the Official List of Brazilian Medicinal Plants of interest to the Brazilian Unified Health System. The study aimed to perform microbiological assays with extracts of Momordica charantia L. including chemical characterization of the active extracts. Methods: The antimicrobial activity was evaluated with the hydroalcoholic and acetone extracts of M. charantia leaves, fruits and seeds from northeastern Brazil using microdilution broth technique on the selected clinical bacterial and fungal strains. Extracts that presented antimicrobial were subjected to ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-ESI-MS). Results: The in vitro antimicrobial assays demonstrated that the leaves extracts presented good antibacterial effect against four Staphylococcus aureus strains, and a weak antifungal activity against Candida albicans. Fourteen compounds were identified in the hydroalcoholic extract, while 12 were found in the acetone extract. The most important compounds were kaempferol, quercetin and triterpenoids like cucurbitacins.

Conclusion: The present study demonstrated the potential antibacterial activity of M. charantia L. from northeastern part of Brazil, in addition to important phytochemical metabolites known to possess antibacterial activities, particularly against microorganisms of clinical importance. The UPLC phytochemical profile of the Brazilian variety is reported here for the first time. The phytochemical profile of the LHE and FAE demonstrated the presence of biologically and pharmacologically active compounds. There is lack of biological and pharmacological studies to support the medicinal uses of this important plant. The Brazilian variety of M. Charantia could be a potential therapeutic agent in the treatment of infections.

Key words: Ethnopharmacology, in vitro activity, Antibacterial, Antifungal.

INTRODUCTION

Momordica charantia L. belongs to the cucurbitaceae family. It is a climbing plant found frequently covering fences and shrubs along the paths from north to south regions of Brazil, especially during the rainy season. It is a species native to Africa that was introduced to South America in the colonial period by black slaves from the African continent.1,2

Momordica charantia is found in nature in various forms distinguishable by the size of the fruits. Two of which are more frequent the northeastern Brazil, where it is popularly referred to as the Melão-de-Caetano, erva-de-lavadeira “laundry-plant”, because the whole plant is used in the washing of clothes in the rural areas. A variety of large fruits that can measure up to 30 cm in length and about 5 cm in diameter is the most common variety in the Asian countries, used both in food and in medicinal preparations. This variety was introduced to Brazil in this century, and its fruits readily be found in the open markets like in the state of São Paulo (Figures 1 and 2).3

In the state of Ceará, northeastern Brazil, one of the earliest records of M. charantia is found in the Coleção Descritiva das Plantas da Capitania do Ceará do Naturalista Feijó “Descriptive collection of Plants of Ceará region” by João da Silva Feijó, who was a Ceará naturalist in 1818.4 As at that time, Brazil was still under Portuguese colonization. However, other works on northeastern Brazilian flora by the naturalist Freire Allemão, who also recorded the species, were based on this collection.5 In the twentieth century, the ethnobotanical descriptions of M. charantia, including its use in the popular medicine of the northeast, can be encountered in important works like the Formulário Fitoterápico (Phytotherapeutic Formulary) of Professor Días da Rocha,6 Plantas do Nordeste, especialmente do Ceará (Plants of the Northeast, especially of Ceará),7 and Plantas da Medicina Popular do Nordeste (Plants of the Northeastern People’s Medicine).8

In the Brazilian state of Ceará, the plant is used topically in compresses, plasters, washes for the treatment of ulcers and various skin disorders...
Due to its ethnomedicinal importance of the local Brazilian variety, this species has been included in the National List of Medicinal Plants of Interest to Brazilian Public Health System and is also part of the Official List of Medicinal Plants of Ceará, a northeastern state of Brazil (REPLAME-CE). The plant also featured in the Brazilian Pharmacopoeia Phytotherapeutics Formulary. Although, the ethnomedicinal uses from the same region was detailed in the Ethnopharmacopoeia of Professor Francisco José de Abreu Matos, which included wound healing, as antiseptic, treatments of gonorrhea, skin diseases, colitis, gynecological inflammation, external tumor, vaginal discharge, infected wounds and for weight loss. The plant parts used are the leaves (its juice, natural form or as poultice, decoction and maceration in water, fruit (natural form or as poultice, its branch and the whole plant). It is also prepared in form of tinctures/alcohol extract and is employed externally to treat skin infections or parasite infestations.

This plant has received a lot of attention due to its many ethnomedicinal and culinary uses. Biological and pharmacological studies of *M. charantia* have shown interesting therapeutic potentials, particularly its antidiabetic, antileishmania, analgesics and anti-inflammatory activities. In addition, pharmacological and biological action of its various metabolites have been cited.

Due to the ethnomedicinal importance of the local Brazilian variety, this species has been included in the National List of Medicinal Plants of Interest to Brazilian Public Health System and is also part of the Official List of Medicinal Plants of Brazil (REPLAME-CE). The plant also featured in the Brazilian Pharmacopoeia Phytotherapeutics Formulary. Although, the ethnomedicinal uses of varieties other than that from Brazil have been cited in many studies using varying biological and pharmacological models, extracts from varying solvents and acetone extracts of *M. charantia* antimicrobial activities collected in the northeastern region of Brazil. To the best of our knowledge, there is no detailed phytochemical study of this important medicinal and food plant of this local variety from northeastern region of Brazil, despite being part of the Official Plant Lists. It is on this basis that we conducted the present study to establish scientific proof for its popular use in treating infections, to standardize extract with promising antibacterial activity and relate its metabolites content based on literature sources to its ethnomedicinal uses by people inhabiting northeastern region (Caatinga Biome) of Brazil.

In this study, we reported the antimicrobial activity of six extracts (hydroethanolic and acetone extracts of *M. charantia* leaves, fruits and seeds) obtained from the northeastern region of Brazil in order to justify its popular use, in addition to conducting phytochemical profile of the most promising extracts.

MATERIALS AND METHODS

Chemicals and reagents

Brain heart infusion media and Agar Sabouraud Dextrose (Kasvi), Müller-Hinton agar, methanol, trichloroacetic acid, ascorbic acid, potassium phosphate buffer, acetonitrile, ethanol, and methanol, used were hypergrade for LC-MS LiChrosolv® and are products of Merk KGaA, Germany. Others such as formic acid 98-100% and n-Hexane were also purchased from Merk KGaA, Germany. Dimethylsulfoxide (Biology applications grade, Sigma-Aldrich, Inc), Oxacilin and fluconazol (Sigma Chemical Company, St. Louis, MO, USA).

Botanical material

The plant was collected from the Medicinal Plants Garden of Prof. Francisco José de Abreu Matos, Universidade Federal do Ceará, in the flowering and fruiting period, precisely in June 2018. The herbarium specimens’ were deposited in the Herbarium Prisco Bezerra the Universidade Federal do Ceará with specimen voucher number EAC31609 and identified as *Momordica charantia* L. For the preparation of the extracts, the leaves, fruits and seeds were submitted to drying in an air circulating oven at 45°C until constant weight, then milled with the aid of a knife mill.

Preparation of leaf, fruit pulp and seeds extracts for microbiological tests

Two extractions were performed for each part of the plant, with ethanol/H₂O (7: 3) and with acetone. 0.80 g of the leaf powder, fruit pulp and seed were weighed separately, and placed in a test tube with 4 mL hexane for degreasing. Subsequently, 4 mL of ethanol/H₂O solution (7: 3) was added, homogenized and the polar compounds extracted in an ultrasonic bath for another 20 min with fixed power (135 W). The samples were then centrifuged (3000 rpm/10 minutes). The hexanic phase was discarded. The hydroethanolic phase (ethanol/H₂O) was filtered on a 0.22 μm PTFE (polytetrafluoroethylene) filter, and thereafter the filtrate was collected in small vials, with subsequent drying and weighing.

For the extraction with acetone, the same procedure was performed, except that before adding acetone the hexanic phase was removed. Thus, six extracts were obtained and coded as follows: Leaves - hydroethanolic extract/ethanol/H₂O (LHE) and acetone extract (LAE); Fruits - ethanol/H₂O extract (FHE) and acetone extract (FAE); Seeds- ethanol/H₂O extract (SHE) and acetone extract (SAE). All these samples were dried and weighed to calculate their yields.

To evaluate the antimicrobial action, the extracts were dissolved in 1% dimethyl sulfoxide solution (DMSO, Merck).

Microorganisms

All bacterial and fungal strains used in *in vitro* experimental models were obtained from the collection of the reference microorganisms used in Sanitary Surveillance (CMRVS, FIOCRUZ-INCQS, Rio de Janeiro) and were maintained in the Applied Microbiology Research Laboratory of Universidade Federal do Ceará. These are *Staphylococcus aureus*.
ATCC 14458 (oxacinillin sensitive), S. aureus CCBH 5330 (oxacinillin resistant and metillin resistant strain MRSA), Staphylococcus epidermidis ATCC 35984, Pseudomona aeruginosa ATCC 9027 and Candida albicans ATCC 10231.

To prepare the microbial inoculum, the strains were cultured in Brain Heart Infusion (BHI) broth for bacteria or Sabouraud broth for yeasts. Subcultures were incubated for 24 hours at 37 °C. For standardization of the inocula, aliquots taken from the subcultured tube were transferred to 0.85% sterile saline to obtain turbidity equivalent to the McFarland 0.5 scale (about 10^6 CFU/mL or 10^4 CFU/mL for bacteria and yeast, respectively). This suspension was diluted to obtain the final microbial colony forming units (CFU) of 10^4 CFU/mL for bacteria or 10^4 CFU/mL for yeasts, and which were used in all the microbiological assays.

The determination of the Minimum Inhibitory Concentration (MIC) was performed according to the methodology recommended by the Clinical and Laboratory Standard Institute. In the 96-well, sterile microplates, 100 μL of culture medium (BHI broth for bacteria or Sabouraud for yeast), 20 μL of the sample (extract), were added in serial concentrations ranging from 2000.0 to 31.2 μg/mL and 80 μL of the microbial colony forming units (CFU) of 10^4 CFU/mL for bacteria or 10^4 CFU/mL for yeasts, and which were used in all the microbiological assays.

The microplates were incubated for 24 hours at 37 °C and after this period, the visual reading of bacterial growth was carried out. MIC was determined as the lowest concentration of test substance capable of inhibiting microbial growth to the naked eye, as evidenced by the absence of turbidity.

For extracts with intense turbidity, 10 μL of resazurin (0.01%) was added and incubated at 37 °C for 2 hours. The maintenance of the blue color in the wells was interpreted as absence of bacterial growth, and the development of pink color, as occurrence of bacterial growth. The MIC was defined as the lowest concentration of the test substance in which there was no change in coloration. The experiments were performed in triplicate and at two different times.

For determination of Minimum Bactericidal Concentration (MBC), 5 μL aliquots of microplate wells used to determine MIC that did not show bacterial growth were seeded in Petri dishes containing plate count agar and incubated for 24 hours at 37 °C. After this period, colonies were counted. MBC was considered as the lowest concentration capable of inhibiting bacterial growth by at least 99.9% of the initial inoculum.

RESULTS AND DISCUSSION

Extracts yields

The yields of the six extracts, previously encoded, were as follows: LHE 9.8%, LAE 4.2%, FHE 17%, FAE 5.2%, SHE 13% and SAE 5.4%.

Microbiological assays

The only extracts that presented significant antimicrobial activity were those of the leaves, which are LHE and LAE, and therefore data for extracts without activity were not shown in the Table 1.

In the present study, antimicrobial activity of LHE and LAE was detected against four of the five clinically important bacterial and fungal isolates. The highest effect was observed for the acetone extract (LAE) (Table 1).

According to Alijannis et al., MIC values <0.5 mg/mL are considered potent inhibitors; MICs between 0.6 and 1.5 mg/mL are moderate inhibitors; and MIC> 1.6 mg/mL are weak inhibitors. Thus, the LAE extract is a potent inhibitor on strains of S. aureus, moderate on S. epidermidis and weak on yeasts (C. albicans). The antibacterial activities of extracts and fractions prepared from different parts of M. charantia have been reported from various parts of the world. In addition, the solvents or the methods employed are completely different.
antimicrobial potential between LAE and LHE extracts on strains of *Staphylococcus* may be due to the differences in metabolites composition of both extracts. Some cucurbitacins have been shown to have in vitro antibacterial activities. An excellent review on cucurbitacins and its derivatives was made by Jian et al. Interested reader would find the review interesting.

Identification of chemical constituents of the hydroethanolic and acetone extracts (LHE and LAE)

The major chemical constituents of *M. charantia* leaves are the tetracyclic triterpenoids and their glycosides, most of which are referred to as cucurbitains, and are known for their bitterness and biological effects, in addition to quercetins and kaempferols.

The cucurbitains belong to a class of plant triterpenic, tetracyclic compounds and highly oxygenated derivatives cucurbitane skeleton. Cucurbitane-like molecules have several polarities due to the variation of substitutions in the side chain or portions of glucose or rhamnose. Several compounds were isolated from extracts of *M. charantia* by separations involving chromatographic processes, which served as reference in the identification of the chemical constituents of the present study.

The chromatograms of the hydroethanolic (LHE) and acetone (LAE) extracts obtained in the positive ionization mode are shown in Figures 3A and B, respectively. The characterized compounds are summarized in Table 2 with the relevant data, including retention time, experimental mass and calculated [m/z], molecular formula, error in ppm provided by the software and the MS/MS fragments. Chemical profile of the extracts afforded the tentative identification of 14 compounds. These are one amino acid, four flavonoids and nine triterpenoids derivatives.

A brief comparison between the hydroethanolic extract and acetone extract of the leaves of *M. charantia* revealed some striking differences. Tryptophan, quercetin and kaempferol hexoside were found only in the LHE extract, while LAE extract presented two unknown compounds, Table 2.

Tryptophan was identified by the precursor ion at m/z 205 (C_{11}H_{13}N_{2}O_{2}) and the characteristic fragment at m/z 130 (indol nucleus). Quercetin-O-hexoside isomers showed a precursor ion at m/z 465 (C_{21}H_{21}O_{12}) and a product ions at m/z 303, key fragment of quercetin aglycone, resulted from the loss of glucose unit. Additionally, quercetin-O-rhamnoside shows a typical precursor ion m/z 449 (C_{21}H_{21}O_{11}) and the characteristic fragment at m/z 303, loss of rhamnose. Kaempferol-O-hexoside showed an m/z at 449 (C_{21}H_{21}O_{11}), with a key fragment of the kaempferol nucleus at m/z 287 indicated by the loss of a hexose. Prior studies have identified these compounds in *M. charantia*.

Curcurbitane-type triterpenes were identified due the losses of H_{2}O (18 Da), CO (28 Da) as well as because of a diagnostic fragment ion at m/z 109 resulting from the break of C17-20 linkage. Thus, hydroxycucurbitate-2,4-ene isomers were identified by the precursor ion at m/z 437 (C_{30}H_{45}O_{2}) and its product ions at m/z 419, 409, 391, 109. An example of this fragmentation pattern occurs with the 3β-hydroxycucurbita-5,22(23)-dien-3β-ol, Figure 4, as previously reported in *M. charantia*. Epoxy isomers showed an additional oxygen (16 Da) and same fragmentation pattern. The Figure 5 depicts the MS fragmentation to 5β,19-epoxycurcubita-6,22(E),24-triene-3β,19-diol, and 3-[(5-formyl-7β,25-dihydroxymethoxycucurbita-5,23-dien-3-yl)oxy]-3-oxopropanoic acid, Figure 6.

**Table 1: Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), in mg/mL, of EtOH/H_{2}O and acetone extracts of *M. charantia*.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>LHE MIC</th>
<th>LAE MIC</th>
<th>MBC</th>
<th>LHE MBC</th>
<th>LAE MBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 14458</td>
<td>0.5</td>
<td>0.25</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. aureus CCBH 5330</td>
<td>-</td>
<td>0.125</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. epidermidis ATCC 35984</td>
<td>2.0</td>
<td>1.0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa ATCC 9027</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans ATCC 10231</td>
<td>-</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHE: leaves hydroethanolic extract (ethanol/H_{2}O, 7:3); LAE: acetone extract.
Table 2: Chemical identification of compounds of the hydroalcoholic (FEC) and acetone (FAC) extracts from the leaves of *Momordica charantia* L. “Melão-de-são-caetano”.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Rt (min)</th>
<th>[M+H]/ [M+Na]+</th>
<th>[M+H]/ [M+Na]+</th>
<th>Product Ions (MS/MS)</th>
<th>Empirical Formula</th>
<th>Ppm (error)</th>
<th>Putative Name</th>
<th>LHE</th>
<th>LAE</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.17</td>
<td>205.0974</td>
<td>205.0977</td>
<td>146.0581, 130.0630</td>
<td>C_{11}H_{13}N_{2}O_{2}</td>
<td>-1.5</td>
<td>Tryptophan</td>
<td>x</td>
<td>-</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>4.35</td>
<td>465.1047</td>
<td>465.1033</td>
<td>303.0482</td>
<td>C_{11}H_{12}O_{6}</td>
<td>3.0</td>
<td>Quercetin-O-hexoside</td>
<td>x</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>4.49</td>
<td>465.1031</td>
<td>465.1033</td>
<td>303.0475</td>
<td>C_{11}H_{12}O_{6}</td>
<td>-0.4</td>
<td>Quercetin-O-hexoside</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>4.52</td>
<td>449.1071</td>
<td>449.1084</td>
<td>303.0463</td>
<td>C_{11}H_{12}O_{6}</td>
<td>-2.9</td>
<td>Quercetin-O-rhamnoside</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>4.60</td>
<td>449.1101</td>
<td>449.1084</td>
<td>287.0553</td>
<td>C_{11}H_{12}O_{6}</td>
<td>3.8</td>
<td>Kaempferol-O-hexoside</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>4.93</td>
<td>805.5035</td>
<td>805.5043</td>
<td>787.4910, 614.4079, 175.1103</td>
<td>C_{52}H_{69}O_{7}</td>
<td>-1.0</td>
<td>Unknown</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>5.03</td>
<td>769.4990</td>
<td>769.4985</td>
<td>333.1419, 175.1103</td>
<td>C_{21}H_{21}O_{12}</td>
<td>0.6</td>
<td>Hydroxycucurbita-tetraenal isomer</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>5.84</td>
<td>437.3416</td>
<td>437.3420</td>
<td>419.3312, 109.1014</td>
<td>C_{21}H_{21}O_{12}</td>
<td>2.5</td>
<td>Hydroxycucurbita-tetraenal isomer</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>9</td>
<td>6.08</td>
<td>437.3431</td>
<td>437.3420</td>
<td>419.3312, 109.1014</td>
<td>C_{21}H_{21}O_{12}</td>
<td>3.2</td>
<td>Hydroxycucurbita-tetraenal isomer</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>6.27</td>
<td>437.3434</td>
<td>437.3420</td>
<td>419.3312, 109.1014</td>
<td>C_{21}H_{21}O_{12}</td>
<td>3.2</td>
<td>Hydroxycucurbita-tetraenal isomer</td>
<td>x</td>
<td>x</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>6.47</td>
<td>629.3694</td>
<td>629.3690</td>
<td>437.3415, 419.3294, 409.3463, 391.3355, 109.1007</td>
<td>C_{36}H_{53}O_{9}</td>
<td>0.6</td>
<td>Oleanane-triterpenoid saponin</td>
<td>x</td>
<td>x</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>6.91</td>
<td>455.3530</td>
<td>455.3525</td>
<td>437.3390, 419.3274, 409.3472, 391.3347, 109.1015</td>
<td>C_{30}H_{47}O_{3}</td>
<td>1.1</td>
<td>Epoxycurbitatrienediol isomer</td>
<td>x</td>
<td>x</td>
<td>2240</td>
</tr>
<tr>
<td>13</td>
<td>7.26</td>
<td>581.3455</td>
<td>581.3454</td>
<td>541.3593, 523.3412, 495.3454, 437.3396, 409.3545, 391.3342, 109.0979</td>
<td>C_{33}H_{50}O_{7}Na</td>
<td>0.3</td>
<td>3-[(5-formyl-7β,25-dihydroxymethoxycucurbita-5,23-dien-3-yl)oxy]-3-oxopropanoic acid isomer</td>
<td>x</td>
<td>x</td>
<td>62</td>
</tr>
<tr>
<td>14</td>
<td>7.52</td>
<td>455.3527</td>
<td>455.3525</td>
<td>437.3463, 419.3361, 409.3446, 391.3396, 109.1000</td>
<td>C_{32}H_{45}O_{3}</td>
<td>0.4</td>
<td>Epoxycurbitatrienediol isomer</td>
<td>x</td>
<td>x</td>
<td>3960</td>
</tr>
<tr>
<td>15</td>
<td>9.57</td>
<td>477.3376</td>
<td>477.3376</td>
<td>437.3398, 419.3287, 409.3346, 109.0984</td>
<td>C_{32}H_{45}O_{3}</td>
<td>1.5</td>
<td>Unknown</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>9.76</td>
<td>525.3571</td>
<td>525.3580</td>
<td>419.3293, 391.3380, 109.1009</td>
<td>C_{32}H_{45}O_{3}</td>
<td>-1.7</td>
<td>Unknown</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 4: Fragmentation patterns of the 3β-hydroxycucurbita-5 (10), 6, 22 (E), 24-tetraen-19-al.
Literature survey of ethnomedicinal uses and biological or pharmacological compounds identified or isolated from M. charantia.

We present the ethnomedicinal uses reported from the northeastern region of Brazil (Table 3) and then made a summary of phytochemicals reportedly identified or isolated from M. charantia and verified in this present local variety, with the view of presenting plausible role for these metabolites in the potential therapeutic effects of this plant.

Literature survey of the ethnomedicinal uses in the northeast region of Brazil of M. charantia and its identified metabolites revealed some interesting findings. In spite of the widespread uses of this important food and medicinal plants, there are still lack of rigorous preclinical and clinical studies, particularly for many of its ethnomedicinal claims. In fact, there is no clinically supported medicinal uses. It is also surprising that some of the biological activities reported are anecdotal due to poor experimental designs, among others. For example, some studies related its biological activities using solutions made from the plants parts without stating the concentrations or dose used, the use of solvents other than those used reported in the ethnomedicinal uses, the parts used in the studies and sometimes the route of administration of the extracts. The most pre-clinically substantiated activities of M. charantia are its anti-diabetic and anti-neoplastic activities. In the present study, we demonstrated the antibacterial and antifungal activities of the leaves extracts of M. charantia against clinically important bacterial and fungal strains. Similar reports have been observed in the literature. In order to be able to give plausible explanation as to the activity observed as well as to standardized the extracts, we performed phytochemical studies on the two extracts studied in the present work. Among the structures identified by UPLC in LHE and LAE extracts of M. charantia, a number of compounds derived from flavonoids and many of which have been shown to possess antimicrobial activities were identified in LHE. However, some of these...
constituents do not appear in LAE extract, which presented better antimicrobial and antifungal activity, suggesting that there are other metabolites, that were not identified in the present work and, which may contribute, at least in part, to the antibacterial and antifungal activities observed.

To the best of our knowledge, there are no sufficient chemical and biological studies to indicate the substances responsible for antibacterial or antifungal activity of *M. charantia*.

These results further demonstrate therapeutic potential of *M. charantia* extracts and calls for further biological and pharmacological prospecting of this important plant. There is need for *in vivo* antimicrobial assays to confirm the potential antimicrobial activity of the plant and its phytochemical constituents that are yet to be subjected to biological/pharmacological studies. In fact, most of its important phytochemical compounds are without biological or pharmacological studies. Majority of studies on its isolates are focused on antidiabetic and anti-cancer activities. In addition, there is lack of studies on many of its ethnomedicinal uses. Furthermore, there is need to carry out mechanistic studies to determine how *M. charantia* and its constituents afford the antimicrobial action observed here as in many studies.

CONCLUSION

The hydroethanolic extract (LHE) and acetone (LAE) from *M. charantia* L. showed different patterns of antimicrobial action against Gram-positive bacteria (*S. aureus* and *S. epidermidis*) and on yeast (*C. albicans*), which are believed to be due to the differences in the composition of extracts as shown by the UPLC analysis of constituents. The study is a pioneer in the association between antimicrobial activity of different Brazilian bitter gourd extracts and its chemical constituents. Nevertheless, studies that will evaluate the compounds alone and in association, as well as those investigating their mechanisms of action are needed to elucidate this pharmacological effect.

ACKNOWLEDGEMENT

The authors would like to thank the Organization of American States (OAS) for conceding study fellowship grant to the first author, Grupo de Universidades Brasileiras de Coimbra (GCUB), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), a Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) for financial assistance, and to the Researchers of the Multi-user Laboratory of Chemistry of Natural Products of EMBRAPA AGROINDÚSTRIA TROPICAL.
Table 3: Summary of ethnomedicinal uses, chemical compounds identified, and activities reported in the literature that corresponds to *M. charantia* ethnomedicinal uses in the northeastern region of Brazil.

<table>
<thead>
<tr>
<th>Ethnomedicinal uses</th>
<th>Confirmed biological/ pharmacological activities</th>
<th>Chemical compounds or extracts with activity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication in skin treatments wound healing.</td>
<td>Wound healing: various model</td>
<td>Fruit powder, extracts</td>
<td>2671-77</td>
</tr>
<tr>
<td>Antiseptic (skin infections, mycoses) and antimicrobial</td>
<td>Antibacterial and antifungal activities</td>
<td>Quercetin-O-hexoside isomers, kaempferol, tannins, flavonoids and alkaloids, various crude extracts</td>
<td>2678-80</td>
</tr>
<tr>
<td>Antiviral</td>
<td>Antiviral activity (inhibit HRV2 replication)</td>
<td>Quercetin-7'-Glucoside</td>
<td>91,92</td>
</tr>
<tr>
<td>Scabies, verminfuge, antihelmintic</td>
<td>Antihelmintic activity</td>
<td>Crude extracts</td>
<td>93</td>
</tr>
<tr>
<td>Tumor and benign breast neoplasm</td>
<td>Antineoplastic and anti-tumor, anti-hepaticellular carcinoma; renal carcinoma cells in-vitro anticaner, malignant melanoma, cytotoxicity against chondrosarcoma SW 1353 cell line; modulates the progression of androgen-independent human prostate cancer cell line</td>
<td>MAP30, Cucurbitacins (Cucurbitacin E glucoside, and Cucurbitacin I glucoside, cucurbitacines A, B, D, E), Kuguacin J and Cucurbitane-type triterpenoids (charantosides, momordicosides, karaviliosides, karaviligenin D) and quercetin</td>
<td>18,38,26,37,43,47,49,54,56,70,94-105</td>
</tr>
<tr>
<td>Anti-diabetic</td>
<td>Antidiabetic activity, stimulatory effect on insulin secretion and various others, including clinical trials(too numerous to mention all)</td>
<td>Different extracts of M. charantia, Kuguacin (The Kuguacin R and Kuguacin II, 3β,7β,25-trihydroxy cucurbita-5,23(E)-diene-19-α, monomordecine I, Momordicosides L, charantoside VII</td>
<td>15,17,26,37,41,43,106-108</td>
</tr>
</tbody>
</table>

REFERENCES

Guarniz, et al.: Momordica Charantia L. Variety from Northeastern Brazil: Analysis of Antimicrobial Activity and Phytochemical Components

GRAPHICAL ABSTRACT

ABOUT AUTHORS

SAGASTEGUI GUARNIZ WILLIAM ANTONIO

MARY ANNE MEDEIROS BANDEIRA
Mary Anne Medeiros Bandeira holds a degree in Pharmacy from the Federal University of Ceará (1981), a specialist in Pharmaceutical Chemistry (1985) from the Federal University of Minas Gerais, Master’s degree (1993) and PhD (2002) in Phytochemistry from the Federal University of Ceará. She teaches Pharmacognosy, Phytotherapy and Phytochemistry at undergraduate and postgraduate levels at the Federal University of Ceará since 1995. Coordinator of the State Committee on Phytotherapy of Ceará and member of the Brazilian Committee on Medicinal Plants. Has experience in Pharmacy, focusing on Green Pharmacies, with research interest in the following areas: Phytotherapy in Public Health, Pharmacovigilance, Quality Control of Medicinal and Phytotherapeutic Plants and Phytochemistry of Natural Products.
Guarniz, et al.: Momordica Charantia L. Variety from Northeastern Brazil: Analysis of Antimicrobial Activity and Phytochemical Components

KARLA DO NASCIMENTO MAGALHÃES
Karla do Nascimento Magalhães holds a degree in Pharmacy from the Federal University of Ceará - UFC (1999), a Master in Pharmacology from the Faculty of Medicine of the Federal University of Ceará (2013) and a PhD in Development and Technological Innovation in Medicines from UFC (2019). Pharmacist at Fortaleza City Hall, Member of the State Committee of Phytotherapy of Ceará, Pharmacy of the Medicinal Plants Garden Professor Francisco José de Abreu Matos / UFC. Has experience in Clinical Pharmacy, Clinical Toxicology, Hospital Pharmacy and Ethnopharmacology.

KELLEN MIRANDA SÁ
Kellen Miranda Sá graduated from the Federal University of Ceará (2000), Master in Public Policy and Higher Education Management (2016), Specialist in Natural Products of Plants and Derivatives, Specialist in Hospital Administration. Pharmaceutical Garden of Medicinal Plants Francisco José de Abreu Matos at the Federal University of Ceará, Member of the State Committee on Herbal Medicine of Ceará, Member of the Alliance of International Aromatherapists (AIA-USA), Member Brazilian Association of Aromatherapy and Aromatology (Abraroma). Has experience in Phytotherapy, Aromatherapy, Pharmacotechnics, Cosmetology, Pharmaceutical Clinic and Hospital Pharmacy.

MIRIAN PARENTE MONTEIRO
Graduated in Pharmacy in the Federal University of Ceará (1982), Master degree in Inorganic Chemistry from the Federal University of Ceará (1987), PhD in Pharmacology at Federal University of Ceará (2000). Currently Associate Professor, level IV at Federal University of Ceará. Experience in Pharmacy with research themes in the following areas: pharmaceutical care, rational use of medicines, pharmaceutical assistance and drug information center. Collaborator Professor of Doctorate at the Postgraduate Program in Development and Technological Innovation in Medicines. Coordinator of the Group on Prevention of Inappropriate Use of Medicines, an Extension Program of the Federal University of Ceará.

PATRICIA GEORGINA
Bachelor in Chemistry from the Federal University of Ceará (2010), Master (2012) and Doctorate (2018) in Chemistry with concentration in Organic Chemistry from the same University. She is the current laboratory technician/phytochemist at the Laboratory of Natural Products in the Abreu Matos Medicinal Plant Garden of the Federal University of Ceará. She currently executes research projects aimed at the phytochemical characterization of medicinal plants. Has experience in Chemistry, focusing on Organic Chemistry, particularly focused on Natural Products, Organic Synthesis and Medicinal Plants.

NADIA ACCIOLY PINO NOGUEIRA
Bachelor Degree in Industrial Chemistry from the Federal University of Ceará (1979), Master in Food Technology (1985) and PhD in Biochemistry from from the same University (1999). Full Professor at the Federal University of Ceará where she lectures at undergraduate and postgraduate levels. Has experience in Microbiology and Molecular Biology, with emphasis on Antimicrobial Activity and Bacterial Resistance. She is coordinator of the Applied Microbiology Research Laboratory and of the Molecular Biology Laboratory of Microorganisms of the Federal University of Ceará.

GLEILTON WEYNE PASSOS SALES
Graduated in Pharmacy (Clinical Analysis), Master and PhD in Pharmaceutical Sciences from the Federal University of Ceará. Member of the Research group of the applied microbiology laboratory at Pharmacy (LabMicrol). Member of the Ateneu Faculty graduate faculty. Has experience in Community Pharmacy, teaching at technical and higher levels. His research interests are: antimicrobial and antifungal activity of natural products and mechanism of action.
HILANIA VALÉRIA DODOU

SIKIRU OLAITAN BALOGUN
I have Bachelor (Hons) and Maters (Biochemistry) degrees from Olabisi Onabanjo University, Ago-Iwoye (Nigeria) (Formerly Ogun State University) and a PhD in Health Sciences (Pharmacology area) from the Faculty of Medicine of the Universidade Federal de Mato Grosso (UFMT). I had lectured at Kampala International University, Uganda (2006 – 2010). Had taught and currently teaching Biochemistry, Pharmacology, Molecular Biology and other related medical sciences courses at both undergraduate and post-graduate levels. Presently lecturer at Faculdade Noroeste do Mato Grosso- AJES. Over 13 years of teaching and research experience. My teaching and research experience covers biochemistry, molecular biology, molecular epidemiology (microbiology), natural product pharmacology, ethnopharmacology, ethnobotanical, medicinal plant bioprospecting, in vitro and in vivo experimental models. Research interests includes molecular epidemiology (bacterial resistance), antimicrobial, anti-inflammatory, anti-ulcer, activities, ethnobotany, ethnopharmacology and toxicity studies of medicinal plants.

Paulo Riceli Vasconcelos Ribeiro
Bachelor Degree in Industrial Chemistry from the Federal University of Ceará - UFC (2008), Master (2010) and Ph.D. in Natural Products from UFC (2016). Currently works with an emphasis on Natural Product, mainly in plant and fungal research. He works as Analyst B at the Brazilian Agricultural Research Corporation, Embrapa. Has experience in mass spectrometry using instruments UPLC-Q-TOF, Waters, and LC-Ms-Iontrap, Agilent, Infrared and in High-Performance Liquid Chromatography.