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INTRODUCTION
Plants have long been used as folk medicine 
to treat various disorders1. Traditional plant-
based remedies remain prevalent due to their 
accessibility, affordability, and minimal side effects. 
Moreover, plant extracts are a valuable source of 
bioactive compounds2 that serve as candidates 
for the development of new drugs. These extracts 
contain various phytoconstituents exhibiting 

a wide range of pharmacological properties, 
including antidiabetic, anticancer, antimicrobial, 
antihypertensive, antioxidant, antihyperlipidemic, 
cardioprotective, immunomodulatory, and anti-
inflammatory activities3. In particular, plant-
derived compounds such as polyphenols and 
flavonoids have demonstrated strong antioxidant 
activity by counteracting oxidative stress. When 
consumed, they may help protect against oxidative 
damage in humans4‑. Antioxidants inhibit or delay 
cellular damage by scavenging or neutralizing 
harmful free radicals. This can reduce the risk of 
non-communicable diseases, including aging-
related disorders, inflammatory conditions, 
tumors, and renal or hepatic diseases5.

Cissus hastata Miq., a member of the Vitaceae 
family, is native to the eastern coast of Australia 
and found in Southeast Asia, including Thailand. 
It is a climbing plant characterized by long, flexible 
red tendrils that scramble over low vegetation and 

tree branches. The lanceolate leaves taper to a reddish 
pointy tip. Small flowers appear in clusters along the 
stem and develop into round berries that turn black 
when ripe6. Compared to other species in the Cissus 
genus, the pharmacological potential of C. hastata 
remains relatively unexplored. For instance, Cissus 
quadrangularis has been extensively studied and is 
known to contain various bioactive compounds, 
including gallic acid derivatives, steroids, iridoids, 
flavonoids, stilbenes, and triterpenes. This species 
exhibits antioxidant, analgesic, anti-inflammatory, 
antipyretic, anticancer, and antibacterial activities7. 
Similarly, Cissus cornifolia contains alkaloids, 
steroids, triterpenoids, flavonoids, cardiac glycosides, 
coumarins, saponins, tannins, and terpenoids, and 
has demonstrated a wide range of pharmacological 
activities, including antifungal, antibacterial, 
anticonvulsant, antidiabetic, antidiarrheal, anti-
inflammatory, antioxidant, and antiproliferative 
effects8. Recent studies on C. hastata reported 
that methanolic leaf extracts contain various 
phytochemicals. These include alkaloids, tannins, 
and steroids, with a total phenolic content of 21.3 
mg gallic acid equivalents (GAE)/g of extract. The 
extract also demonstrated antioxidant activity, with 
an IC50 value of 7.27 μg/mL against 2,2-diphenyl-1-
picrylhydrazyl (DPPH). Therefore, this study aimed 
to evaluate the phytochemical profile, total phenolic 
and flavonoid contents, antioxidant potential, and 
antibacterial activity of C. hastata leaf extracts using 
different solvent extractions6. 
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MATERIALS AND METHODS

Chemical reagents 
Ascorbic acid, Folin-Ciocalteu reagent, gallic acid, quercetin, 2,2'-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-
picrylhydrazyl (DPPH), and 2,4,6-tris(2-pyridyl)-s-triazine (TPTZ) 
were obtained from Sigma-Aldrich (Germany). Meuller Hinton agar 
media was purchased from HiMedia (Mumbai, India). All other 
chemicals and reagents used in this study were of analytical grade.

Plant materials
Fresh leaves of Cissus hastata were collected from their natural habitat 
in Nakorn Sri Thammarat Province, Thailand, between July and 
September 2023. The authenticity of the plant was confirmed, and 
the specimen was deposited in the Faculty of Medicine, Princess of 
Naradhiwas University. The leaves were washed with tap water, oven-
dried at 50 °C for 72 hours, and then ground into coarse powder using 
a mechanical grinder for further use.

Preparation of plant extracts
Two hundred grams of dried leaf powder were sequentially macerated 
with solvents of increasing polarity: hexane (Hex), ethyl acetate 
(EtOAc), 95% ethanol (EtOH), and 50% ethanol (AqE). Each extraction 
was performed at room temperature for 72 hours and repeated three 
times with a fresh solvent to enhance yield. The extracts were filtered 
through Whatman No. 1 paper and concentrated under reduced 
pressure at 50 °C using a rotary evaporator or freeze-dried. Dried 
extracts were weighed, stored in dark containers at 4 °C, and used for 
subsequent analyses. The extraction yield (%) was calculated as:

Phytochemical screening
Preliminary phytochemical screening was conducted on the Hex, 
EtOAc, EtOH, and AqE extracts of C. hastata leaves to detect the 
presence (+) or absence (-) of alkaloids, anthraquinones, cardiac 
glycosides, coumarins, saponins, steroids, tannins, and terpenoids 
using modified procedures9,10.

Determination of total phenolic content (TPC)
The total phenolic content was determined using the Folin-Ciocalteu 
method11. In brief, 25 μL of diluted extract was mixed with 100 μL 
of diluted Folin-Ciocalteu reagent in a 96-well plate and incubated 
for 5 minutes. Then, 75 μL of sodium carbonate (Na2CO3) (100 g/L) 
was added. After 2 hours at room temperature, absorbance was 
measured at 765 nm using a microplate reader (SPECTROstar Nano, 
BMG LabTech). Gallic acid was used as a standard, and results were 
expressed as milligrams of gallic acid equivalents per gram of extract 
(mg GAE/ g extract).

Determination of total flavonoid content (TFC)
The total flavonoid content was determined by the aluminum chloride 
colorimetric method11. In each well, 50 μL of diluted extract was mixed 
with 100 μL of ethanol and 50 μL of 10% aluminum chloride (10% 
AlCl3). After 3 minutes of incubation at room temperature, 20 μL of 1 
M sodium acetate (CH3COONa) and 60 μL of ethanol were added. The 
mixture was incubated in the dark for 40 minutes, and absorbance was 
measured at 430 nm. Quercetin was used as the standard, and results 
were expressed as milligrams  of quercetin equivalents per gram of 
extract (mg QE/g extract).

Antioxidant activity 

DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay

The DPPH radical scavenging activity, which reflects the free radical 
scavenging capacity of the extracts, was assessed following the method 
described by Singdam et al11. Briefly, 50 μL of each extract was mixed 
with 150 μL of 0.2 mM DPPH in a 96-well plate and incubated in the 
dark at room temperature for 30 minutes. Absorbance was measured at 
517 nm. Ascorbic acid and quercetin were served as standards. DPPH 
radical scavenging inhibition (%) was calculated using the formula:

Where Acontrol is the absorbance without the test sample, and Asample is 
the absorbance with the test sample.

ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) 
radical scavenging assay

The ABTS radical scavenging activity, which measures the ability of 
antioxidants to quench ABTS⁺ radicals, was conducted using a method 
based on a previous study11. ABTS (7 mM) and potassium persulfate 
(2.42 mM) solutions were mixed in equal volumes and incubated in the 
dark for 12-16 hours to generate ABTS radicals. The resulting solution 
was diluted to an absorbance of 0.8 ± 0.1 at 743 nm. Extract samples 
(25 μL) were mixed with 180 μL of diluted ABTS solution in a 96-well 
plate and incubated in the dark at room temperature for 30 minutes. 
Absorbance was recorded at 743 nm. Ascorbic acid and quercetin were 
used as standards. The percentage of ABTS radical scavenging was 
calculated using the same formula as in the DPPH assay.

Ferric reducing antioxidant power (FRAP) assay

The FRAP assay primarily measures the reducing potential of 
antioxidants in a sample was performed following the method of 
Singdam et al11. The FRAP reagent was prepared by mixing 10 mM 
TPTZ (2,4,6-tris(2-pyridyl)-s-triazine) in 40 mM HCl, 20 mM ferric 
chloride (FeCl3·6H2O), and 300 mM acetate buffer (pH 3.6) in a 
1:1:10 ratio. A diluted extract (20 μL) was added to 180 μL of FRAP 
reagent in a 96-well plate, and the mixture was incubated in the dark 
at 37 °C for 15 minutes. Absorbance was measured at 593 nm. FRAP 
values were calculated from the standard curve prepared from ferrous 
sulphate (FeSO4) solution and were expressed as mM FeSO4 equivalents 
per milligram of extract (mM FeSO4/mg extract). 

Antibacterial properties 
The evaluation of antibacterial activity was conducted using the 
agar well diffusion method12. Five bacterial strains (Gram-positive; 
Staphylococcus aureus TISTR 517, Methicillin-resistant Staphylococcus 
aureus (MRSA 142), and Bacillus cereus ATCC 11778, and Gram-
negative; Escherichia coli ESBL 182 and Salmonella typhimurium 
TISTR 292) were used in the study. Bacterial strains were initially 
grown on Mueller Hinton Agar (MHA) for 18 hours at 37 °C, followed 
by subculturing in Mueller Hinton Broth (MHB) for 4 hours. The 
bacterial suspension was then standardized to 0.5 McFarland turbidity 
(approximately 1.5 × 108 CFU/mL) using 0.85% NaCl solution. Each 
bacterial inoculum was evenly spread on MHA plates, and wells 
measuring 0.6 cm in diameter were created using a sterile pipette tip. 
Aliquots of 100 µL from different solvent extracts of C. hastata leaves, 
at concentrations of 25, 50, and 100 mg/mL, were tested. The plates 
were maintained at room temperature for 5 hours to allow diffusion, 
then incubated at 37 °C for 18 hours. Inhibition zone diameters were 
measured using a vernier caliper and recorded in millimeters (mm). 
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Gentamicin (10 μg/mL) and 10% DMSO were used as positive and 
negative controls, respectively.

Statistical analysis
All experiments were conducted in triplicate, and the results were 
expressed as mean ± standard deviation (SD). Significant differences 
were determined by a one-way analysis of variance (ANOVA), followed 
by Tukey’s post hoc test (p < 0.05) using GraphPad Prism 10.4.0. 

RESULTS AND DISCUSSION

Extraction yields
The percentage yields of the crude extracts of C. hastata with hexane 
(Hex), ethyl acetate (EtOAc), 95% ethanol (EtOH), and 50% ethanol 
(AqE) solvents are shown in Table 1. The extraction yields (%w/w) of 
the extracts were 4.43% (Hex), 1.94% (EtOAc), 11.59% (EtOH), and 
7.45% (AqE). The results revealed that ethanol extraction produced 
the highest amount of crude extract, whereas ethyl acetate extraction 
resulted in the lowest yield. The variations in extraction yields observed 
in this study may be attributed to several factors, including the choice 
of solvents, extraction method, plant material used, and the chemical 
composition of different plant parts13,14. Moreover, the extraction 
yields of C. hastata varied with solvent polarity, with ethanol giving the 
highest yield, indicating its superior ability to extract phytochemicals 
from C. hastata. This can be attributed to the polar nature of ethanol. 
Its polarity facilitates the extraction of a broad range of polar and semi-
polar bioactive compounds, such as phenolic acids and flavonoids15.

Preliminary phytochemical screening

Phytochemical screening of C. hastata leaf extracts revealed the 
presence of alkaloids, cardiac glycosides, coumarin, saponins, steroids, 
tannins, and terpenoids. However, none of the extracts exhibited a 
color change in the anthraquinones test (Figure 1 and Table 2). The 
Hex extract showed only positive tests for cardiac glycosides and 
steroids. The EtOAc extract showed positive tests for coumarin and 
steroids. However, the EtOH extract showed positive tests for all tested 
phytoconstituents, except anthraquinones. Lastly, the AqE extract 
contained various chemical constituents, including alkaloids, cardiac 
glycosides, coumarin, saponins, steroids, and terpenoids. Our findings 
align with those of Muhamad et al. (2023), who found that the methanol 
leaf extract of C. hastata contained alkaloids, steroids, and tannins but 
lacked saponins. Also, their study did not assess the presence of cardiac 
glycosides, coumarins, or terpenoids6. The absence of saponin in the 
extracts of the prior study may be attributed to the different solvent 
extraction methods. Furthermore, the phytochemical composition of 
medicinal plants can be influenced by environmental factors during 
growth and development, including temperature, atmospheric CO2, 
ozone levels, light exposure, and soil conditions16.

Total phenolic content (TPC) and total flavonoid content 
(TFC)
Phenolic and flavonoid compounds play a vital role in scavenging free 
radicals and protecting the body from oxidative stress by supplying 
hydrogen atoms or electrons to neutralize the free radicals and prevent 
cellular damage. This process can help lower the risk of various 
health problems, including cancer, diabetes, and other degenerative 
diseases17. In this study, the total phenolic and flavonoid contents of 
different solvent extracts of C. hastata leaves were evaluated (Figure 2). 
Total phenolic content (TPC) was expressed as gallic acid equivalents 
(GAE), based on the standard calibration curve: y = 0.0066x + 0.0064 
with R² = 0.9993 (Figure 2a). Similarly, total flavonoid content (TFC) 
was determined as quercetin equivalents (QE) using the equation: y 
= 0.01x - 0.0562, with R² = 0.9998 (Figure 2c). The EtOAc and AqE 
extracts had significantly the highest TPC (65.31 ± 1.85 mg GAE/g 
extract and 61.45 ± 3.34 mg GAE/g extract, respectively) (p < 0.05), 
while the lowest TPC was shown by the Hex extract (7.31 ± 0.29 
mg GAE/g extract) (Figure 2b). The highest TFC was significantly 
observed in the EtOH extract (29.92 ± 3.42 mg QE/g extract) (p < 0.05). 
Moreover, the AqE extract contained the second-highest amount of 
total flavonoid (20.21 ± 1.07 QE/g extract), while the Hex and EtOAc 
extracts exhibited the lowest flavonoid amount (16.82 ± 3.53 and 
17.42 ± 2.50 mg QE/g extract, respectively) (Figure 2d). However, a 
previous study found that the TPC value of the methanolic extract 
of C. hastata leaves was 21.30 mg GAE/g extract6. Due to their high 
solubility in organic solvents, polyphenols are often extracted from 
plant materials using solvents such as methanol, ethanol, ethyl acetate, 
acetone, or mixtures of solvents with water18,19. According to previous 
research, the combination of ethanol and water exhibits higher polarity 
compared to absolute ethanol, which can enhance the extraction 
efficiency of free phenolics20. Moreover, flavonoids, a type of phenolic 
compound, exhibit varying solubility based on their structural 
forms. The flavonoids of the aglycone type are more soluble in polar 
solvents, and the glycosides are more soluble in nonpolar solvents21. 

Ethanol, especially at high concentrations, is particularly effective at 
extracting aglycone flavonoids, which may account for the elevated 
TFC in the ethanol extract. This is supported by findings from Maulana 
et al. (2019), who reported that 96% ethanol yielded the highest 
TPC among various ethanol-water mixtures, highlighting ethanol’s 
strong selectivity for flavonoids over other phenolic constituents22. In 
summary, the results demonstrated that the highest TPC was obtained 

Extracts Extraction yield (%)
Hex 4.43
EtOAc 1.94
EtOH 11.59
AqE 7.45

Table 1. Percentage of extraction yield from different solvent extracts of 
C. hastata leaves.

Extract abbreviations: Hexane (Hex), ethyl acetate (EtOAc), 95% 
ethanol (EtOH), and 50% ethanol (AqE).

Phytochemicals
Test reagent 
(test 
performed)

Observation
Results
C. hastata leaf extracts
Hex EtOAc EtOH AqE

Alkaloids Wagner’s 
reagent

Reddish-
brown 
precipitate

- - + +

Anthraquinones Borntrager’s 
test

Reddish-pink 
coloration - - - -

Cardiac 
glycosides

Keller-
Killiani test

Brownish ring 
between the 
layers

+ - + +

Coumarin Alkaline 
reagent test

Yellow 
coloration - + + +

Saponins Foam test Persistent 
froth - - + +

Steroids Liebermann-
Burchard test

Blue or 
bluish-green 
coloration

+ + + -

Tannins Ferric 
chloride

Dark green 
or dark blue 
coloration

- - + -

Terpenoids Salkowski 
test

Brownish ring 
at the interface - - + +

Table 2. Phytochemical analysis of different solvent extracts of C. hastata 
leaves.

(+) = Positive (-) = Negative. Extract abbreviations: Hexane (Hex), 
ethyl acetate (EtOAc), 95% ethanol (EtOH), and 50% ethanol (AqE).
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Figure 1. Phytochemical tests of C. hastata leaf extracts using different solvent extractions. (A) Alkaloids were detected in the EtOH and AqE extracts, as 
evidenced by the formation of a reddish-brown precipitate. (B) Anthraquinones were absent in all extracts, indicated by the lack of any visible color change. 
(C) Cardiac glycosides were present in the Hex, EtOH, and AqE extracts, as shown by a characteristic brownish ring between the layers. (D) Coumarins were 
detected in the EtOAc, EtOH, and AqE extracts, as indicated by the appearance of a yellow to orange coloration. (E) Saponins were observed only in the 
EtOH and AqE extracts, as evidenced by the formation of a persistent froth or foamy layer. (F) Steroids were detected in all extracts except the AqE extract, 
with a bluish-green coloration as a positive indication. (G) Tannins were present only in the EtOH extract, as shown by the formation of a dark green or 
dark blue color. (H) Terpenoids were observed in both the EtOH and AqE extracts, evidenced by the presence of a brownish ring at the interface. Extract 
abbreviations: Hexane (Hex), ethyl acetate (EtOAc), 95% ethanol (EtOH), and 50% ethanol (AqE).

Figure 2. The total phenolic and flavonoid content (TPC and TFC) in different solvent extracts of C. hastata leaves. (a) The calibration curve of TPC; (b) TPC; 
(c) The calibration curve of TFC; and (d) TFC. The data are presented as mean ± SD based on three independent replicates (n = 3). Statistically significant 
differences among the extracts were indicated by different superscript letters (p < 0.05). Extract abbreviations: Hexane (Hex), ethyl acetate (EtOAc), 95% 
ethanol (EtOH), and 50% ethanol (AqE).
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from polar and moderately polar solvents, specifically 50% ethanol and 
ethyl acetate, while the 95% ethanol extract yielded the highest TFC. 
These findings align with previous studies, suggesting that solvent 
polarity significantly influences the extraction efficiency of phenolics 
and flavonoids based on their solubility and structural forms23.

Antioxidant activity analysis
In vitro antioxidant assays such as DPPH, ABTS, and FRAP assess 
an antioxidant’s ability to donate electrons to convert free radicals 
into stable anions24. The DPPH assay evaluates antioxidant activity 
and operates on the principle of electron transfer. DPPH is a stable 
free radical that has a purple color and strongly absorbs light at a 
wavelength of 517 nm. In the presence of an antioxidant, DPPH 

undergoes reduction through the donation of an electron or hydrogen 
atom, leading to a visible color change from deep purple to yellow or 
colorless. This reduction in absorbance at 517 nm reflects the sample’s 
antioxidant capacity25. Similarly, the ABTS assay evaluates antioxidant 
activity by measuring the reduction of the blue-green ABTS radical 
cation, which has a strong absorbance at 734 nm. When antioxidants 
are introduced, they donate electrons to ABTS, resulting in a reduction 
of the blue-green color to pale blue. This decolorization is directly 
proportional to the antioxidant capacity of the sample26.

The percentage inhibition of DPPH and ABTS radicals at various 
concentrations ranging from 100 to 500 μg/mL is presented in Figure 
3a-3b. Additionally, the DPPH and ABTS radical scavenging activity of 
the extracts was evaluated by calculating the IC50 values, which represent 
the concentration required to inhibit 50% of the free radicals. Among 
the tested extracts, the EtOH and AqE extracts exhibited significantly 
higher DPPH scavenging activity, with IC50 values of 307.07 ± 7.18 and 
316.86 ± 11.78 μg/mL, respectively (p < 0.05). These values were notably 
lower than those of the EtOAc extract (843.45 ± 49.97 µg/mL) and the 
Hex extract (2229.00 ± 73.83 μg/mL), sμggesting that EtOH and AqE 
extracts possess superior DPPH scavenging potential compared to the 
other extracts (Figure 3c).

In the ABTS assay, as shown in Figure 3d, the EtOH extract displayed 
the strongest radical scavenging ability with an IC50 value of 160.21 ± 
5.43 μg/mL, followed by the AqE extract (208.45 ± 3.84 μg/mL), EtOAc 
extract (507.16 ± 8.51 μg/mL), and the Hex extract (1162.83 ± 76.56 μg/
mL). The significantly lower IC50 values of the EtOH and AqE extracts 
in the ABTS assay indicate their greater efficiency in neutralizing ABTS 
radicals (p < 0.05).  When compared to ascorbic acid and quercetin, 
standard antioxidants, the IC50 values of all the extracts were higher, 
indicating that the extracts were less potent than ascorbic acid and 
quercetin. For the DPPH assay, ascorbic acid and quercetin exhibited 
an IC50 value of 12.37 ± 0.70 and 8.37 ± 0.13 μg/mL, respectively, while 
for the ABTS assay, the IC50 value of ascorbic acid and quercetin was 
90.40 ± 6.27 and 9.09 ± 0.34 μg/mL, respectively (Figure 3c-3d).

Furthermore, the reducing potential of C. hastata leaves was evaluated 
through the FRAP assay, which quantifies the ability of antioxidants in 
the leaf extracts to reduce the Fe³⁺-TPTZ complex to its ferrous (Fe²⁺) 
form at a low pH.24 The FRAP values were expressed as mM FeSO4 
equivalents per mg of extract. These values were determined using a 
standard calibration curve, with the equation: y = 0.0771x + 0.0218; R² 
= 0.9983 (Figure 3e).

As illustrated in Figure 3f, the reducing potential of C. hastata leaf 
extracts varied based on the solvent employed for extraction. The AqE 
and EtOH extracts exhibited the highest FRAP values (4.96 and 4.69 
mM FeSO4/mg extract, respectively), consistent with their high DPPH 
and ABTS activity. These results were markedly higher than those 
obtained for the EtOAc extract (1.08 ± 0.18 mM FeSO4/mg extract) 
and the Hex extract (0.21 ± 0.05 mM FeSO4/mg extract), indicating 
that polar solvents, particularly ethanol and ethanol-water mixture, 

are more effective in extracting reducing agents from C. hastata leaves. 
In comparison, the standard antioxidants ascorbic acid and quercetin 
demonstrated significantly greater reducing capacities, with values of 
36.60 ± 3.16 and 238.03 ± 3.64 mM FeSO4/mg extract, respectively (p 
< 0.05), underscoring their strong antioxidant activity. These findings 
suggest that C. hastata leaves contain bioactive compounds with 
reducing properties, particularly those extractable by polar solvents. 
The markedly higher activity observed in the AqE and EtOH extracts 
highlights the role of solvent polarity in maximizing the yield of 
antioxidant constituents.

Previous findings by Muhamad et al. (2023) indicated that the methanol 
extracts of C. hastata leaves had potent DPPH scavenging activity, with 
an IC50 value of 7.27 μg/mL.6 However, in the present study, although 
the EtOH and AqE extracts of C. hastata leaves exhibited higher total 
phenolic content, their IC50 values were substantially higher (307.07 ± 
7.18 μg/mL and 316.86 ± 11.78 μg/mL, respectively). This discrepancy 
suggests that antioxidant activity may not correlate directly with total 
phenolic content, but rather with the presence and proportion of 
specific phenolic or flavonoid compounds27. Among the four different 
solvent extracts of C. hastata leaves, those obtained using 95% ethanol 
and 50% ethanol solvent also exhibited the most potent antioxidant 
activity.

Antioxidant activity can be attributed to the presence of phenolic 
and flavonoid compounds, which are well known for their electron-
donating abilities and free radical scavenging properties. The efficiency 
of ethanol in polyphenol extraction has also been documented in 
earlier studies, providing further support for the observed antioxidant 
potential of these extracts28,29. These findings suggest that ethanol-
based solvents are highly efficient at extracting potent antioxidant 
compounds, particularly polyphenols and flavonoids, from C. 
hastata leaves. Overall, the extracts obtained from 95% ethanol and 
50% ethanol solvent showed the highest TPC, TFC, and antioxidant 
activities, confirming the efficiency of polar solvents in extracting 
bioactive compounds from C. hastata leaf. However, high TPC and 
TFC do not always correlate with antioxidant potency due to several 
factors, including compound specificity, synergistic effects, and the 
dual role of certain compounds30,31. Thus, although TPC and TFC are 
commonly used indicators of antioxidant capacity, they do not account 
for the complex interactions and mechanisms involved in antioxidant 
activity32.

Antibacterial activity
The antibacterial activities of the hexane (Hex), ethyl acetate (EtOAc), 
ethanol (EtOH), and aqueous (AqE) extracts of C. hastata leaves 
were evaluated against five bacterial strains: Staphylococcus aureus, 
methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, 
Escherichia coli, and Salmonella typhimurium. These strains were 
selected to represent both Gram-positive and Gram-negative bacteria 
with clinical and food safety significance. S. aureus and MRSA are 
common causes of skin, soft tissue, and hospital-acquired infections33, 
while B. cereus is a well-known foodborne pathogen34. E. coli and S. 
typhimurium are representative Gram-negative enteric pathogens 
associated with gastrointestinal infections35. Collectively, both 
Gram-positive and Gram-negative bacteria ensure a comprehensive 
evaluation of the broad-spectrum antibacterial potential of the plant 
extracts.

The results, presented in Table 3, revealed varying degrees of inhibition 
zones (mm) among different concentrations (25-100 mg/mL). The 
antibacterial activity of all extracts of C. hastata leaves was observed 
solely against Gram-positive bacteria at any tested concentration (25-
100 mg/mL). Notably, the Hex extract exhibited inhibitory effects at 
100 mg/mL against S. aureus (14.81 ± 0.77 mm), MRSA (12.63 ± 1.24 
mm), and B. cereus (14.86 ± 0.52 mm). The EtOAc extract exhibited 
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Figure 3. Antioxidant activities in different solvent extracts of C. hastata leaves. (a) percentage of DPPH radical inhibition by different solvent extracts of C. 
hastata leaves; (b) percentage of ABTS radical inhibition by different solvent extracts of C. hastata leaves; (c) IC50 values for scavenging DPPH; (d) IC50 values 
for scavenging ABTS; (e) calibration curve of FeSO4; and (f) FRAP values. The data are presented as mean ± SD based on three independent replicates (n = 3). 
Statistically significant differences among the extracts were indicated by different superscript letters (p < 0.05). Extract abbreviations: Hexane (Hex), ethyl 
acetate (EtOAc), 95% ethanol (EtOH), and 50% ethanol (AqE).
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specific antibacterial activity against B. cereus, with increasing 
effectiveness from 13.63 ± 1.77 mm at 25 mg/mL to 15.23 ± 0.88 mm at 
100 mg/mL. Additionally, an inhibition zone of 16.00 ± 0.70 mm was 
observed against S. aureus at 100 mg/mL. The EtOH extract followed 
a similar pattern to the EtOAc extract, displaying inhibitory activity 
solely against B. cereus, with the zones of inhibition ranging from 10.87 
± 0.31 mm (25 mg/mL) to 12.91 ± 1.44 mm (100 mg/mL). The AqE 
extract at 100 mg/mL showed significant inhibition against S. aureus, 
MRSA, and B. cereus, with zones of inhibition of 15.43 ± 0.46 mm, 14.76 
± 0.58 mm, and 15.66 ± 1.04 mm, respectively. As a positive control, 
gentamicin (10 μg/mL) exhibited antibacterial activity, with the zones 
of inhibition against S. aureus (20.51 ± 0.20 mm), B. cereus (24.64 ± 
0.27 mm), S. typhimurium (25.27 ± 0.23 mm), and E. coli (16.87 ± 0.33 
mm), affirming its broad-spectrum efficacy.

Previous studies on other Cissus species, such as Cissus quadrangularis 
and Cissus rotundifolia, have reported significant antibacterial activity 
against both Gram-positive and Gram-negative bacteria36,37. However, 
our study found that none of the C. hastata leaf extracts exhibited 
antibacterial activity against the tested Gram-negative strains (E. coli 
and S. typhimurium) at different concentrations (25-100 mg/mL). The 
structural differences in the cell walls of Gram-positive and Gram-
negative bacteria influence their susceptibility to phytochemicals. 
Gram-negative bacteria possess a more complex cell wall that includes 
an outer lipopolysaccharide layer, which often acts as a barrier to limit 
the entry of various substances. In contrast, Gram-positive bacteria 
have a simpler structure consisting mainly of a thick peptidoglycan 
layer, which allows for greater permeability. As a result, phytochemicals 
are generally more effective against Gram-positive bacteria due to their 
easier access to the cell structure38.

Phytochemical analysis suggests that the antibacterial effects may be 
attributed to bioactive constituents such as alkaloids, polyphenols, 
and flavonoids39. Particularly, polyphenolic compounds have been 
demonstrated to have antibacterial action through various mechanisms 
that are closely associated with their structural characteristics, chemical 
composition, and lipophilicity. For instance, polyphenols may interact 
directly with bacterial membranes, causing structural damage and 
leading to the leakage of intracellular contents. This disruptive effect is 
largely facilitated by the hydroxyl groups within polyphenol structures, 
which form hydrogen bonds with membrane components40. Thus, the 
comprehensive study of C. hastata leaf extracts has identified a range of 
bioactive compounds with notable antibacterial properties.

CONCLUSION
The current study highlights the significant antioxidant and 
antibacterial potential of different solvent extracts of Cissus hastata 
leaves, particularly those extracts using ethanol-based solvents. The 
findings of this study provide a foundational basis for the potential 
development of this indigenous plant as a therapeutic agent. Its notable 
antioxidant and antibacterial activities indicate a promising role in 
alleviating various diseases, including the development of treatments 
for infectious diseases. Markedly, this study contributes scientific 
evidence supporting the medicinal properties of C. hastata, thereby 
advancing its potential application in evidence-based therapeutics.  
Further studies are needed to isolate and identify individual bioactive 
components from the crude extracts of C. hastata leaves based on the 
polarity of the extraction solvents.
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