Potential Role of Ashwagandha [Withania Somnifera] As An Antioxidant On Aluminium Chloride-Induced Testicular Damage In Wistar Rats

Anchana Babu1, Rekha D Kini^{1*}, Nayanatara Arun Kumar¹, Megha Gokul¹, Bhagyalakshmi K¹, Sneha Shetty B1, Vinodini NA¹

Anchana Babu¹, Rekha D Kini^{1*}, Nayanatara Arun Kumar¹, Megha Gokul¹, Bhagyalakshmi K¹, Sneha Shetty B¹, Vinodini NA¹

¹Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India

Correspondence

www.phcogi.com

Dr.REKHA D KINI

Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India

E-mail: rekha.kini@manipal.edu

History

- Submission Date: 29-08-2025;
- Review completed: 19-09-2025:
- Accepted Date: 06-10-2025.

DOI: 10.5530/pj.2025.17.72

Article Available online

http://www.phcogj.com/v17/i5

Copyright

© 2025 Phcogj.Com. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

ABSTRACT

Introduction: Aluminium is most prevalent and third most abundant element in earth crust after oxygen. Its exposure in high concentration can accumulate in many organs that damage various organs in living organisms like humans and animals. Although aluminum (Al) is known to induce oxidative damage through various mechanisms including binding to negatively charged phospholipids on the membrane of various tissue cell which are rich in PUFA.Hence,this study was aimed to find the potential role of ashwagandha on aluminum induced testicular toxicity. Methods: Animals were segregated into 4 groups of 6 rats in each. The control group, the Ashwagandha treated group, the Aluminum intoxicated group, pretreated with Ashwagandha with Aluminum intoxicity group. Testicular tissue was removed and were stored in 10% formalin saline and histopathological slides were done. A part of the tissues were processed for estimation of MDA and GSH level. Results: In the present study administration of aluminum in rats showed a significant decrease in the testicular tissue level of GSH and sperm count, as well as increase in the level of MDA and sperm morphology in aluminum treated group compared to normal control. Treatment with Ashwagandha showed a significant increase in testicular GSH level, sperm count and decrease in MDA level sperm morphology. Conclusion: The results of this study revealed that oral Aluminum Chloride administration induced adverse oxidative effects on the exposed animals and treatment with W. somnifera reduced the extent of aluminium chloride-induced tissue injury KEYWORDS: Reactive Oxygen Species, Reduced glutathione, Malondialdehyde, Sperm morphology

NET WORDS. Treative Oxygen Species, freduced glatatificite, ivialoridaderiyae, Speriff morphe

INTRODUCTION

Aluminum is an abundant and prevalent metal, element in the earth's crust Aluminum exposure in high concentration can bring about its accumulation in many organs that damages various organs in the living organisms like humans and animals. Some of the toxic effects of Aluminum include $neurotoxicity^{1,2,3}\ hematotoxicity^4,\ hepatotoxicity^{5,6},$ nephrotoxicity⁷ and reproductive toxicity^{8,9,10}. Oxidative stress is an imbalance between aggressive and defensive system^{11,12}. Although aluminum (Al) is known to induce oxidative damage through various mechanisms in the body. Few of them are that Aluminum can bind to negatively charged phospholipids on the membrane of various tissue cell which are rich in PUFA that are targeted by reactive oxygen species (ROS) such as O2, H2O2, OH, and OH13. Withania somnifera also called as ashwagandha is an evergreen shrub belonging to Solanaceae family and grows abundantly in India. Winter cherry, Indian ginseng, and Ajagandha, Queen of Ayurveda, called by so many names, Withania somnifera Dunal (Ashwagandha; Family-Solanaceae), is a plant used in ayurvedic medicine in the traditional system¹⁴. Fresh root of the Ashwagandha herb 'smells like horse' so-called Ashwagandha, because there is the belief that anyone who consumes the herb is given the power and strength of a horse^{15,16}. Alkaloids, steroidal lactones, saponins, and withanolides sitoindosides VII-X and withaferin A are the biological active component of Ashwagangha¹⁷. These are known

to have antioxidative activities and proved by the activation of antioxidant enzymes superoxide dismutase and GSH, the increase in vitamin C, and decrease in lipid peroxidation. Therefore, this study was aimed to find the potential role of ashwagandha on aluminum-induced testicular toxicity in rats. Hence the present study was conducted to evaluate the damaging consequences of aluminum Chloride on testes and to explore the antioxidant and therapeutic role of Ashwagandha [Withania Somnifera] on Aluminum Chloride induced testicular damage

MATERIALS AND METHODS

The Institutional ethics committee approval was secured before starting the experiment (KMC/MNG/IAEC/14-2023). Healthy adult male wistar rats weighing between 150 and 200 grams was taken for this study from our institution's central animal house. They were kept in the laboratory's central animal housing, which had regulated lighting and temperature as well as regular rat food and water. Aluminium chloride was from Sigma company and Ashwagandha was purchased from Saptam veda company.

Experimental design and animal grouping

Animals were segregated into the following groups of 6 rats in each group. Twenty-four rats were randomly allocated into four groups (6 rats each) as followed:

Cite this article: Anchana B, Rekha D K, Nayanatara A K, Megha G, Bhagyalakshmi K, Sneha S B, Vinodini N A. Potential Role of Ashwagandha [Withania Somnifera] As An Antioxidant On Aluminium Chloride-Induced Testicular Damage In Wistar Rats. Pharmacogn J. 2025;17(5): 583-587.

Group I: Normal rats were given water (2 ml/kg bw) via oral gavage for 3 week and acted as the negative control.

Group II: Rats were Ashwagandha (60mg/kg bw dissolved in distilled water) via oral gavage for 3 weeks and acted as the positive control.

Group III: Rats were treated with aluminium (100mg/kg bw dissolved in distilled water) via oral gavage for 3 weeks

Group IV: Rats treated with Ashwagandha (60 mg/kg bw) & aluminium (100mg/kg bw) via oral gavage for 3 weeks.

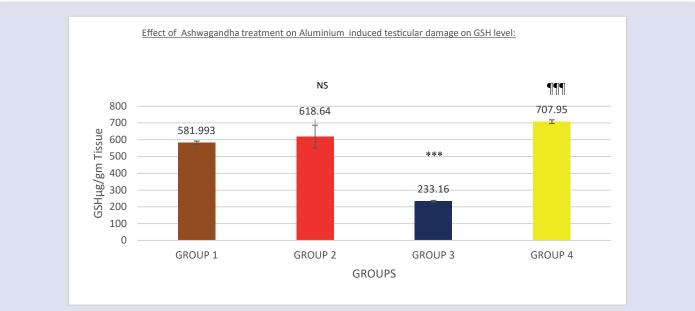
After the end of the protocol, animals were sacrificed by giving Pentabarbitone (40mg/kg bw). The laparotomy was performed, and the reproductive organs were removed. Testis were removed and were stored in 10% formalin saline and histopathological slides were done. A part of all the tissues were processed for estimation of MDA¹⁸ and GSH¹⁹level. The tissues were treated to prepare paraffin blocks were as per standard protocols²⁰. The epididymis processed for sperm count and sperm morphology²⁰. Finally, a drop of Canada balsam in xylol was placed on the slide and covered with a cover slip. Slides were coded for analysis.

Statistical analysis: The data was presented as mean \pm SD. The unpaired t-test was used for data analysis using statistical package SPSS version 17.0. P<0.05 was taken as statistically significant.

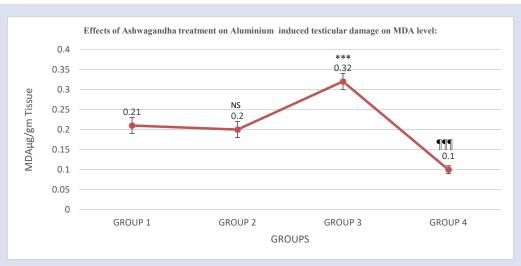
RESULTS

In the present study administration of aluminum in rats showed a significant(P<0.0001) (Table 1) decrease in the testicular tissue level of GSH when compared to normal control group. There was also a significant (P<0.05) increase in the testicular tissue level of MDA in aluminum treated group compared to normal control (Table 2). Treatment with Ashwagandha showed a significant increase in testicular GSH level (Graph 1) and decrease in MDA level (Graph 2) compared to aluminum intoxicated rats (Group.III). Sperm count (P<0.001) was significantly low in the aluminum treated group compared to normal control group. Treatment with Ashwagandha showed a significant increase(P<0.001) in the sperm count compared to aluminum intoxicated rats In the present study rats intoxicated with aluminum (Group III) showed significant increase in total sperm shape abnormality compared to control groups (P<0.001).But a significant decrease in sperm shape abnormality was observed in rats treated with Ashwagandha.

Table 1. Effect of Ashwagandha treatment on sperm count in aluminum intoxicated rats.


GROUPS	SPERM COUNT
GR.I	824.24±3.14
GR.II	$804.24\pm 9.14^{ m NS}$
Gr.III	516.74± 7.43***
Gr.IV	614.20± 2.78 ⁵⁵

Values are express as Mean \pm SEM. Number of animals (n)=6. P <0.05 is taken as significant, NS(not significant) GR.I versus Gr.II . ***P<0.0001, GR.I versus GR.III**P<0.001, GR.III versus Gr.IV.


Table 2. Effect of Ashwagandha treatment on sperm morphology in aluminum intoxicated rats.

Groups	Normal	НА	TA	MC	СС	Total
Group I	187±3.22	9.83±0.75	8.83±0.75	0.5±1.22	5±0.40	19.06±2.82
Group II	184.26±3.48	9.83±0.75	9.33±1.03	0.83±1.16	1.1±1.09	19.33±3.46
Group III	134.4±1.33***	34.5±1.51	24.83±1.83	4.16±0.75	3.14±0.63	54.22±2.34***
Group IV	149.17±1.82555	26.16±1.16	17.83±0.75	1.83±0.40	3.02±0.63	39.77±1.72555

HA – Head abnormality, TA – Tail abnormality, MC – Microcephaly ,CC – Cephalocaudal junction Mean \pm SEM, n=6 in each group.***P<0.0001 ,GR.I Versus Gr.III, ***P<0.0001 Gr.III versus Gr.IV

Graph 1: Effect of Ashwagandha treatment on testicular tissue level on GSH in aluminum treated rats. Values are express as Mean±SD. Number of animal (n)=6. P <0.05 is taken as significant. ,NS (not significant) GR.I versus Gr.II ***P<0.0001, GR.I versus GR.III, ***P<0.0001, GR.III versus GR.II

Graph 2. Effect of Ashwagandha treatment on testicular tissue level on MDA in aluminum treated rats. Values are express as Mean±SD. Number of animal (n)=6. P <0.05 is taken as significant. NS (not significant) GR.I versus Gr.II ***P<0.0001, GR.II versus GR.III, ***P<0.0001, GR.II versus Gr.IIV

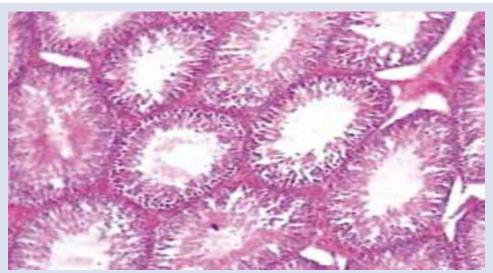
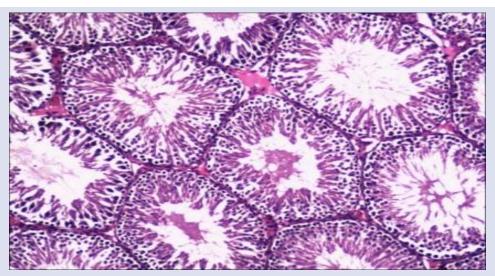



Figure 1. Photomicrograph of rat testis shows normal histological features in normal control group (Group I) (Hematoxylin & eosin).

Figure 2. (Group II) (Haematoxylin & eosin). Appearance of normal spermatogenic cells from the basement membrane. The Leydig cells and Sertoli cell is seen to be normal. Normal spermatogenesis is seen.

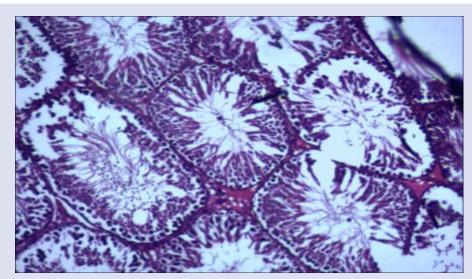


Figure 3. Photomicrograph of rat testis shows sloughing of cells and Leydig cells necrosis, destruction of Sertoli cells.(Group-III)

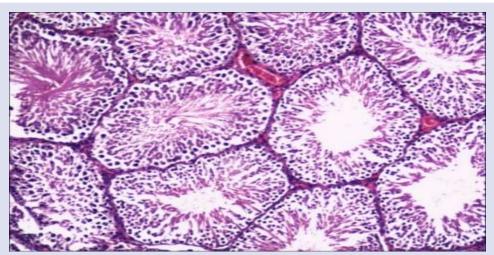


Figure 4. Photomicrograph of rat testis shows resorted spermatogenic cells and matured spermatogenic cells (Group-IV).

DISCUSSION

Numerous studies have established the neurotoxic nature of Aluminium Chloride^{21,22,23}. Eventhough it is considered as a metal with relatively low redox activity, it acts as a causative agent of oxidative stress by various mechanisms. Several clinical investigations suggested that Al could be a factor in the development of neurological illness, including Alzheimer's disease, Parkinson's Disease, and Multiple Sclerosis²⁴. The current study unveils aluminum induced oxidative toxicity in testicular tissue of the rats. The toxicity induced by Aluminum Chloride in a dosage of 100mg/kg/bw/day has shown a significant reduction in GSH in testicular tissue. The lower production of GSH following Aluminum exposure might be caused by a reduction in the activation of enzyme the Glutathione Synthetase that might have attributed to lack of elimination of generated ROS25. On the other side, MDA level in testicular tissue is increased in Aluminum intoxicated group, which is a well-known LPO indicator. Previous studies have proven that this is associated with reduced SOD activity, thus inhibiting the protection of spermatozoa against elevated O2 toxicity and LPO. Thus AlCl2 acts as an inhibitor of SOD and thereby increases MDA^{24,25}. This result has been reflected in the sperm count, sperm morphology, and histological examination. The significant reduction in sperm count and sperm morphology following Al exposure in this study reassures the involvement of Al in oxidative stress and reinforces the role of ROS. Previous studies have documented that declined sperm count and abnormal sperm morphology, can occur as a consequence of decreased cAMP and increased NO production by Aluminum exposure²⁶. The testicular examination in the present study has shown visible sloughing of spermatogenic cells and Leydig cell necrosis, which contributes to abnormal spermatogenesis following Al exposure. The results of our study reported that the pretreatment of ashwagandha extract prevented the oxidative stress induced by aluminum. This was indicated by the ability of ashwagandha root extract to cause significant testicular elevation in GSH level. Ashwagandha induced increase in increased GSH level indicates the antioxidant action of Wthania Somnifera, and can act as protective agent against cellular damage induced by free radicals. Present study has also shown that ashwaghandha plant extract has also reduced the MDA, which contribute a major proportion of ROS in cells. Thus reduction in ROS indicates the antioxidant action of Withania Sominifera in testicular tissue. Results of previous research conducted showed that the maintenance of reduced ROS promotes cell survival in normal cells, while in cancer cells, ROS levels are considerably increased, leading to the accumulation of mutations, aberrant proliferation and an aggressive metastatic phenotype²⁶.

It has been noticed in current study that action of WS in treatment group has also caused a remarkable increase in sperm count which was declined significantly by Al intoxicated group. Sperm count has been increased significantly along with an appreciable healing in sperm morphology when compared to Al intoxicated group. This finding is validated by the histological examinations in the present study, which showed restoration of spermatogenic cells which was sloughed by the action of Aluminium. Strong anti-apoptotic and antioxidant qualities of WS treatment may be responsible for these preventive benefits²⁷(Shown in Figure 1,2,3,4).

CONCLUSION

In conclusion, the results of this study revealed that oral Aluminium Chloride administration induced adverse oxidative effects on the exposed animals as evidenced by the recorded abnormalities in the investigated biochemical parameters. In the present study, treatment with root extract of *W. somnifera* reduced the extent of aluminium chloride-induced tissue injury by maintaining the activities of antioxidant enzymes like SOD and GSH and reducing lipid peroxidation indicating that *W. somnifera* has a beneficial role in ameliorating oxidative damages induced by aluminum.

REFERENCES

- Barnham K.J., Masters C.L., Bush A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004;3(3):205–214.
- Bosch R, Quiroga B, Moreno C et al. Bisphenol A: An environmental factor implicated in renal vascular damage. Nefrología.2012; 36 (1):5–9.
- 3. Rubin B.S. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 2011;127(1):27–34.
- Knaak, J.B. and Sullivan, L.J. Metabolism of bisphenol A in the rat. Toxicology and Applied Pharmacology. 1996; 8:175-184.
- Krishnan, A.V., Stathis, P., Permuth, S.F., Tokes, L. and Feldman, D. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology.1993;132: 2279-2286.
- Biles, J.E., McNeal, T.P., Begley, T.H. and Hillifield, H.C.Determination of bisphenol-A in reusable polycarbonate foodcontact plastics and migration to food-simulating liquids. Journal of Agriculture and Food Chemistry.1997; 45: 3541-3544.
- Brotons, J.A., Olea-Serrano, M.F., Villalobos, M., Pedraza, V. and Olea, N. Xenoestrogens released from lacquer coatings in food cans. Environmental Health Perspectives. 1995; 103: 753-758.
- Olea, N., Pulgar, R., Perez, P., Olea-Serrano, F., Rivas, A., Norvillo-Fertell, A., Pedraza, V. Soto, A.M. and Sonnenschein, C. 1996. Estrogenicity of resin-based composites and sealants used in dentistry. Environmental Health Perspectives, 104: 298-305.
- Buddhadeb Ghosh, Ravi Kant Sharma, Suman Yadav, Ankita Randev. Toxic Effects of Aluminium on Female Reproductive System in Presence of Ethanol Coexposure. Research Journal of Pharmacy and Technology. 2021; 14(7):3809-5.
- Wejdan M. Kadhem, Hanaa Enaya. Effect of Lead and Aluminium in the levels of Dopamine and Acetylcholine in the Brain Male Rats. Research J. Pharm. and Tech. 2018; 11(5):2055-2057.

- KM Diksha Singh, Vikram Singh, Adity Singh, Vipin Kesharwani. Evaluation of Oxidative Stress potential of some Nsaids against Hydrogen Peroxide in experimental animal. Research Journal of Pharmacy and Technology. 2021; 14(12):6194-0.
- Nurul Aqmar Mohamad Nor Hazalin, Hasseri Halim, Izzah Firzana Rosli, Nur Aqilah Nazri, Hannis Fadzillah Mohsin, Rozaini Mohd Zohdi, Donna Maretta Ariestanti, Richard Johari James. Protective effect of Phaleria macrocarpa Methanolic Fruit Extract against Oxidative Stress in Brine Shrimps. Research Journal of Pharmacy and Technology. 2024; 17(2):585-0.
- Antonia Ayala, Mario F. Munoz, and Sandro Arguelles. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxi Med Longev. 2014;2;360-365.
- Ray C, et al. Evaluation of neuro-protective activity of Ashwagandha and vacha in combination as ayurvedic medhya rasayana in vivo. Int Ayurvedic Med J. 2016; 4(10): 2914–22. http://www.iamj.in/posts/ images/upload/2914_2922.pdf.
- 15. Singh N, Bhalla M, de Jager P, et al. An overview on Ashwagandha: a Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med. 2011; 8(5): 208–213. doi: 10.4314/ajtcam.v8i5S.9. https://www.ncbi.nlm.nih.gov/pubmed/22754076
- Kaushik MK, Kaul SC, Wadhwa R, et al. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLoS One. 2017; 12(2): e0172508. https://www.ncbi. nlm.nih.gov/pubmed/28207892
- Ahmed ME, et al. Attenuation of oxi-dative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma 2013; 250: 1067–1078.
- 18. Rao GM, Rao AV, Raja A, Rao S, Rao A. Lipid peroxidation in brain tumours. Clin Chim Acta. 2000;302(1-2):205-211.
- Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-77
- Culling C F A, Allison RT, Batt WT. Cellular pathology techniques, 14th edition, London: Butter worths, 1985.
- Ding Rui, Yang Yongjian. Aluminum chloride induced oxidative damage on cells derived from hippocampus and cortex of ICR mice. Brain Research.2010;9:96-102
- Corneliu Toader, Nicolaie Dobrin, Felix-Mircea Brehar et al. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int J Mol Sci. 2023;24(22):16119.
- Shelly C MD. GLUTATHIONE SYNTHESIS. Biochim Biophys Acta.2013;1830(5):3143-3153.
- 24. P.Perumal. Effect of Superoxide Dismutase on Semen Parameters and Antioxidant Enzyme Activities of Liquid Stored (5°C) Mithun (Bos frontalis) Semen. Journal of Animals. 2014:9:217-219
- Peruma P., Selvaraju S., Barik A. K., Mohanty D. N., Das S., and Mishra P. C., Role of reduced glutathione in improving postthawed frozen seminal characters of poor freezable Jersey crossbred bull semen, Indian Journal of Animal Sciences. 2011; 81: 807–810.
- Naina Kunar and Amit Kanth singh. Impact of environmental factors on human semen quality and male fertility: a narrative review. Environmental Science Europe.2022;34:6
- Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6(221):221ra15

Cite this article: Anchana B, Rekha D K, Nayanatara A K, Megha G, Bhagyalakshmi K, Sneha S B, Vinodini N A. Potential Role of Ashwagandha [Withania Somnifera] As An Antioxidant On Aluminium Chloride-Induced Testicular Damage In Wistar Rats. Pharmacogn J. 2025;17(5): 583-587.