Lathraea squamaria L. (Orobanchaceae): A Review of its Botany, Phytochemistry, Traditional Uses and Pharmacology

Bokov DO1,2,*, Barkalova VE3,4, Suslikova MA1, Sokhin DM1, Kakhramanova SD1,4, Rendyuk TD1, Streylyaeva AV1, Antsyshkina AM1, Balobanova NP1, Prostodusheva TV1, Grikh VV1, Krasnyuk II1 (junior), Marakhova AI5, Moiseev DV6

ABSTRACT

This paper presents the results of the review pharmacognostic study of common toothwort, a perennial plant, parasitizing on the roots of trees. Currently, in Russian traditional medicine, there is considerable experience in the use of common toothwort (*Lathraea squamaria* L.) herb and roots as antitumoral, biligenic, infertility-treatment and diuretic drugs. The chemical composition of *L. squamaria* has not been quite well determined. Phenylethanoid glycosides (acteoside, isoacteoside), iridoid glycosides (aucubin, and aucuboside ester, 6-O-glucopyranosyl-aucubin, melampyroside, 6-O-glucopyranosyl melampyroside), simple sugars, fatty acids, organic acids, β-sitosterol were identified. Further study of *L. squamaria* raw materials is a very promising field including implementation in official medicine.

Key words: Lathraea squamaria, Orobanchaceae, Common toothwort, Parasitic plants, Chemical compounds, Iridoids, Aucubin.

INTRODUCTION

There is a specific interest toward groups of parasitic floral forms in Russia and abroad from the viewpoint of medical use. The research of the parasitic plants from figwort (*Scrophulariaceae* Juss.) and broom rape family (*Orobanchaceae* Vent.) is conducted intensively as evidenced by the numerous messages of its significant pharmacological activity. During the research, the relation of the pharmacological potential of the semi-parasitic plants to their external conditions and their way of life was established. For solving pharmacognostic and phytotherapeutic goals the studies of diagnostic features and characteristics of parasitic plants were conducted. Different structural features of their vegetative organs described. These data can be used for further botanic diagnosis of the parasites of Figwort and Broom rape families and their products. One of the famous plants of the root rape family is common toothwort (*Lathraea squamaria* L., Figure 1). Earlier this plant was in the figwort family.1-5

L. squamaria is used only in folk medicine. There is no pharmacopeial monograph in any pharmacopoeia in the world. It is known that aqueous extract from the common toothwort raw material has antitumoral, biligenic and diuretic activities; it is also used for treating infertility in men and women, stimulation of cardiac, hepatic and renal system function.1,2 Poorly understood chemical composition and the lack of product normative documentation prevent common toothwort crude herbal drugs from being released on the Russian market. However, earlier mentioned positive pharmacological properties of the common toothwort determine the topicality and the necessity of further pharmacological research.

Thus the research aims to find out the literary documents of the chemical composition and pharmacological properties of the common toothwort (*Lathraea squamaria* L.).

MATERIALS AND METHODS

Different methods of articles analyzing were used for the accomplishment of our goals. For example, information analysis documental and systematic. Electronic sources were analyzed: Web of Science, Scopus, PubMed, E-Library, Cyberleninka, search engines (Google Scholar). Since there were few scientific literature sources for *L. squamaria*, we have analyzed all available sources.

RESULT AND DISCUSSION

L. squamaria botanical and pharmacognostic characteristic

The common toothwort, being a member of the broom rape family, lacks chlorophyll and exists solely by the means of the host plant (obligate holoparasite). A colorless stem with crimson red flowers is the primary morphological feature to recognize this plant in a spring Russian forest. The Russian name “*Petrov’s cross*” (*Petrov krest*) appeared during the botanical morpholocal description of the plant; during the growth, the roots of *L. squamaria* form something that looks like crosses. The common toothwort belongs to *Lathraea* genus which also includes other species like purple toothwort (*L. clandestina* L.), rhodope toothwort (*L. rhodopea* Dingler), Japanese toothwort (*L. japonica* Miquel).

© 2020 Phcogj.Com. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
The common toothwort can be defined as an achlorophyllous perennial according to botanical morphological characteristics. Common toothwort has a thick albescant ramulous rootstock with subopposite squames. Stems with spike-like inflorescences grow up to 30 cm. Irregular flowers located on the pedicel. The flowers consist of heather covering leaves situated in two rows that are almost the size of a calyx. The calyx is glandulous, bell-shaped, quadrilobate. The flower crown is heather, bilabiate, tubulous campanulate, it is bigger than the calyx. The flowers are usually red or crimson and grow in a cluster or a raceme. The fruit has a bivalved egg- or ball-like shape (Figure 2). The common toothwort blooms in spring (April–May).

The central part of the plant is a vastly ramulous rootstock that is located deep underground. In spring during vegetation white or pink tendrils, carrying stems, start to grow above the ground. Also, thin roots that grow from the rootstock when touching the roots of the host plant form a special type of thickening, a surculus (haustorium). 5–9

The squams that cover the common toothwort stem are of particular interest to the scientists. Earlier this plant was considered carnivorous and the squams to be a trap for catching the insects. The scale has cavities with small slits; its walls are covered with glands that look like carnivorous plant glands, for example, sundew (Drosera rotundifolia L.). The thought that the common toothwort is a carnivorous plant was supported by the findings of dead insects in the scale cavities regardless of being digested by the plant or not. Currently, this illusion is dispelled, supported by the findings of dead insects in the scale cavities regardless of being digested by the plant or not. It was identified that the common toothwort is usually a parasite the plants growing near its area of inhabitation also should be considered. So it was concluded that the common toothwort usually coexists with geophytes and hemicryptophytes which bloom before forming leaves. In central Europe and neighboring areas of West and East Europe, the common toothwort is usually seen in alluvial or oak and hornbeam forests, also in forests with a large number of marple, ash, teak, and ulmus. 13-19

It was found that there are chromoplasts in the common toothwort tissues when the scales structure of the aboveground stems and underground roots were studied. As a part of the study, it was found that one can see in the composition a clearly disturbed group of plastins and vesicles in circumferential position, a one almost round object made of well-formed and concentric double plastines in the central position. Also, starch granules were found. They are absent in chromoplasts of the underground organs and the structure of chromoplasts is less developed. There are a lot of proteoplasts in the scale cells of the rootstock. Such proteoplasts are lacking in the underground organs. Similarly, chloroplasts were not found even in the protoplasmic phase. 20,21

L. squamaria has a wide system of underground stems covered with small tightly overlapping scale-like leaves (Figure 3). In early spring epigean buds start to grow from the stems side by side. These buds appear aboveground at the same time as the flowers (Figure 4, on the left). 20,22

The majority of the lower and middle flowers already have dead corollas by the end of April; only 4–6 upper flowers remain blooming. After a few weeks, the dead corollas and ovaries swell greatly as a result of the development of the ovules (the process takes almost the whole month). In the middle of May, the capsules start to open (Figure 4, on the right); the
L. squamaria medicinal usage

The common toothwort is a poisonous plant. When eaten it causes poisoning, despite that the common toothwort is used in traditional medicine. Roots and herb are used as crude herbal drugs. They are harvested in spring, in April or May during the mass blooming. The whole plant is dug out by hand, the soil is cleaned off and it is dried up in shade or in a well-ventilated place.

In folk medicine, the crude herbal drug of the common toothwort is used for treating kidney diseases, liver conditions, various diseases of reproductive systems of men and women. For example, the disorder of uterus muscle tone, infertility, menstrual disorders, benign prostatic hyperplasia. In combination with other drug plants (hemlock – Conium maculatum L., wolfsbane – Aconitum napellus L., etc.) it is used as an antitumoral drug. Folk medicine recommends using infusion. To make the infusion it is needed to grind the L. squamaria crude herbal drug, put one teaspoon of the drug into a cup, pour 250 ml of boiling water and let the infusion stay for an hour, then filter it. It is advised to have a cup two times a day. A decoction can be also made from the common toothwort. To prepare it is needed to pour over the grated roots 250 ml of water and put it on a boiling water bath for 20 min, then the decoction is filtered. It is recommended to take half a cup of the decoction twice a day for a month. A tincture from the common toothwort is preparing with 40% ethanol as extraction agent. It is recommended to take 15-20 drops of the tincture mixed with 50 ml of water twice a day half an hour before meals. In scientific sources little attention is paid to the study of chemical composition and pharmacological properties of the common toothwort, preclinical studies were not conducted. There is a hypothesis that crude herbal has cytostatic properties (i.e. an alkylating agent), so it potentially could be used for treating oncological diseases. The use of the common toothwort for curing liver, gal bladder diseases is based on the fact that there are compounds that have a choleretic effect in the common toothwort. The diuretic effect of the plant lends to be used for getting rid of edema.

Dr. O.D. Barnaulov’s research is quite promising; he studied the ways of using the common toothwort as a drug in phytotherapy. Dr. Barnaulov is a Ph.D., corresponding member of the Russian Academy of Natural Science, leading scientific worker of the Institute of Human Brain of Russian Academy of Sciences, experimental and clinical phytotherapy group supervisor. In research, he pointed out the cases of the positive influence of herbal teas (mixture herbal products) on his patients. Men with multiple sclerosis and other neurotic disorders, who complained about a decrease in fertility, took part in the experiment. The herbal tea consisted of a small amount of the adaptogen plants, that was compensated by their combination. The author notes that the herbal tea effects not only to reverse symptoms of a neurotic disease apart from moderate sensory impairment but also increase libido, sexual vigor and erectile function. In the article published by Barnaulov, there were three medical records of the patients, which took part in the experiment. The first patient came to the clinic in 2003 when he was 29 years old. He had numbness in his limbs, diplopy, multiple sclerosis, and sexual vigor dysfunction with other symptoms of different nature. The patient was a typical asthenic, prone to depressions, try to hide his disease, he was very skeptical about phytotherapy.

For treating this patient an individual mix of herbs (herbal tea) containing aboveground parts (garden parsely*, garden lovage*, bur beggar-ticks*, knotgrass*, Saint-John’s-wort*, common motherwort, crisped-leaved mint*, common balm*, creeping thyme*, common self-heal, common winter cress*, European verbena*, wild strawberry*), leaves (red raspberry, drooping birch, goat willow, garden sage*, common plantain*, fireweed), fruits (cinnamon rose*, blood-red hawthorn*), flowers (wild chamomile, meadowsweet, pot marigold, forest anthuriscus) and roots (setewell*) were gathered. ‘The whole common toothwort’, ‘carnation’, ‘anise tree’ and common nutmeg were used. The author states that this herbal tea was aimed to control symptoms of the above-mentioned illnesses, to increase libido and sexual vigor of the patient. Plants mentioned in the mix with a “*” have a positive gonadotrophic effect. The majority of the plants also have antilatent, antieductive, cerebroprotective, desensitizing, antioxidiant, stress-limitative and anti-inflammatory pharmacological effects, notable to people with multiple sclerosis; the combination of these properties is commonly found in these plants. The same properties are observed for their mixture; it was proved by clinical supervision and high performance of phytotherapy.

During the study, the patient has completed the courses of supporting phytotherapy in 7 years. During this time symptoms of all the illnesses disappeared, there was only one flare-up with a moderate sensory disorder. The decrease of sexual vigor stopped in 3 months after starting the treatment. The second patient was an example of a severe medical case. The patient was diagnosed with multiple sclerosis. According to medical history, the patient had symptoms that occurred a long time ago under stress. During the 11 years, he continuously took poly component herb tincture. For treating patient 2 different herbal teas were used including the tea containing fruits (common dill, anise*, fennel*, coriander, garden carrot*, cinnamon rose*), aboveground parts (crisped-leaved mint*, common balm*, creeping thyme*, spicate lavender*, common origanum). The whole common toothwort* and carnation* were used. Synergistic plants were prescribed to get the desired antideuctive, immunocorrecting, antifatigue, antistress effects. A significant amount of plants with a positive gonadotrophic effect were included in herbal tea. As a result of treatment, improvement effects were included in herbal tea. As a result of treatment, improvement became apparent; the patient stopped complaining of sexual vigor dysfunction, sometimes complained of constitutional weakness.

L. squamaria phytochemical studies

Earlier, researchers paid little attention to the phytochemistry of L. squamaria. Researchers from University of Veterinary and Pharmaceutical Sciences (Czech Republic) studied the chemical composition of this plant. Two isometric phenylethanoid glycosides, acetoside and isoacetoside were isolated and identified; they were never described in this plant before. Besides, benzoic acid was discovered for the first time, the presence of iridoid glycoside aucubine in all studied parts of the plant was confirmed (Table 1). Also, iridoids were isolated from L. squamaria. Researchers B. Grabias, S. Ofterdinger-Daegel, L. Światek, A. Kurowska identified a new iridoid disaccharide, 6'-O-glucopyranosyl-melampyroside, among other
Table 1: The chemical composition of *L. squamaria*.

<table>
<thead>
<tr>
<th>Iridoids</th>
<th>Phenylethanoid glycosides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucubin</td>
<td>Melampyroside</td>
</tr>
<tr>
<td>6′-O-glucopyranosyl-aucubin</td>
<td>6′-O-glucopyranosyl melampyroside</td>
</tr>
<tr>
<td>Phytosteroids</td>
<td>Acteoside (Verbascoside)</td>
</tr>
<tr>
<td>β-sitosterol</td>
<td>Isoacteoside</td>
</tr>
</tbody>
</table>

Table 1: The chemical composition of *L. squamaria*.
known glycosides aucubine, melampyroside and 6′-O-glycopyranosyl-
acubin from the seeds of L. squamaria. The structure of above-
mentioned chemical compounds was discovered with the help of
spectrum data with 1H-NMR, 13C-NMR methods, desorption
chemical ionization mass spectrometry (DCI-MS). Also, β-sitosterol
was educed, six fatty acids (oleic, linolenic, linoleic, palmitic, stearic, myristic)
were found in seed oil (Table 1).25

L. Swiatek and L. Dombrowicz educed acuboside and D-mannitol,
and found glucose, fructose and acuboside ester. After hydrolysis 6
phenolic acids were identified. Also, the researches consider glycosides
of aucubine group as elements of chemotaxonomic significance.26

The endogenous levels of abscisic acid in parasitic phanerogams of
Arceuthobium oxycedri (DC) Bieb., Cassytha filiformis L., Lathraea
squamaria L., Melampyrum pratense L., Orobancha hederae Duby, and
Vigna album L. were studied. All in all, abscisic acid value was
high in parasitic plants, that strip their hosts of the substances carried
by phloem or xylem and lower in plants stripping the hosts of their
juices just from xylems. In studied parasites (for example, O. hederae,
L. squamaria and M. pretense) the highest value of the abscisic acid is
contained in the places of absorbing, especially in inflorescences. It is
assumed that the high value of abscisic acid is associated with plant
tissue, which suggests a high need for substances carried by the phloem.
A possible role of abscisic acid in such tissues is discussed.27

CONCLUSION

The common toothwort is a perennial plant, which parasitizes on the
roots of trees, usually hazel, alder, beech and bird cherry. The chemical
composition of the common toothwort is underexplored very well. There
is information that the common toothwort contains iridoids,
phenylethanoid glycosides, organic acids, monosaccharides, fatty
acids. The more thorough research of the bioactive substances was
not conducted, so additional research of quantitative and especially
qualitative profile is needed. There are no pharmacopeial monographs
on L. squamaria in all the world’s pharmacopoeias. This plant is only used
in traditional medicine for treating infertility, for example. Aqueous
extract of the common toothwort raw material has antitumoral,
biligenic and diuretic activities. It also stimulates cardiac, hepatic and
renal system functions.

ACKNOWLEDGMENT

This paper was financially supported by "Russian Academic Excellence
Project 5-100" (Schenov University). The publication has been prepared
with the support of the “RUDN University Program 5-100”.

CONFLICTS OF INTEREST

None.

REFERENCES

1. Petrichenko VM, Suchinina TV, Syropyatov BY, Shestakova TS. The hypotensive
activity of extracts from some plants of the Scrophulariaceae family occurring in

2. Kiseleva OA. About the diagnostics of the raw material of parasitic figwort.

3. Petrichenko VM. Pharmacognostic studies and the biological activity of plants
Perm. 2005;327.

4. Kiseleva OA. Issues of using parasitic plants in modern medicine. Theoretical
and applied aspects of modern science. 2015;9-3:36-9.

5. Alekseev YuE, Vakhrameeva MG, DenisoVA LV, Nikitina SV. Forest herbaceous
1988;223.

6. Rudenko T. Male cells of Scrophulariaceae. Spermatogenesis and fertilization

7. Terekhin ES, Shibakina GV, Serafimovich NB, Kravtsova TI. Key to the Broomrape
family of the USSR flora (from atlasses of fruits and seeds). St. Petersburg:
Science. 1993;127.

8. Taselev NN. Teryokhin E.S. Broomrape family (Orobanchaceae). Plant Life.

9. Gubanov IA. Lathraea squamaria. Peter’s cross scaly. Illustrated identifier
of plants of Central Russia. In 3 vols. Moscow: KMK Scientific Publishing

10. Scherfel A. Die Dörren in den Höhlen der Rhizomuschappen von Lathraea
squamaria L. Mit Tarf. 1936;95:610.

12. Vorobyeva MV. Forest phytopathology. Section 4. Diseases of trunks and

1981;380.

14. Pröfs-Jones OE, Willmer PG. The biology of alkaline nectar in the purple
toothwort (Lathraea clandestina): ground level defences. Biological Journal of

15. Martin CM, Prieto GM. Fichas del Catálogo de Flora Protegida en Castilla y
León. Lathraea squamaria. Thesium alpinum. 2011;207.

17. Aassen A, Blomdal E. Toothwort. Lathraea squamaria in Aust- and Vest-Agder

18. McGreal E. Lathraea squamaria Linnaeus in West Mayo (H27). The Irish

19. Rüther C, Klotz J. Distribution, phytosociology and ecology of Lathraea
squamaria in southern Germany, with a survey of the situation in Central

20. González ALC, Redondo RA, González MEG. Datos sobre Lathraea squamaria

21. Laudi G. Ricerche infrastrutturali sui plasti delle piante parasite. II. Lathraea

22. Bellin I.G. Flowing semi-parasites and parasites, Moscow. 1968;118.

23. Barnaulov OD. The positive ganodotrophic effects of the phytotherapy patients
with multiple sclerosis and other neurological diseases. Reviews on Clinical

24. Daskova I, Žemlička M, Svačílenka E, Bartí ř, Šmejkal K. The chemotaxonomic
significance of phenylethanoid glycosides of Lathraea squamaria L.

25. Grabias B, Offerdinger-Daegeł S, Swiatek L, Kurovska A. Iridoid glycosides

26. Swiatek L, Dombrowicz E. Pharmacobotanical investigations on some species
of the Scrophulariaceae family. Part V. Chemical constituents in Lathraea

27. Ihl B, Jacob F, Meyer A, Semidiber G. Investigations on the endogenous levels
of abscisic acid in a range of parasitic phanerogams. Journal of Plant Growth
About Authors

- Bokov Dmitry Olegovich: Candidate of Pharmaceutical Sciences (Ph.D.), Institute of Pharmacy, Sechenov University; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety.
- Barkalova Valentina Evgenievna: Student, Faculty of Pediatrics, Siberian State Medical University.
- Suslikova Maria Alekseevna: Student, Institute of Pharmacy, Sechenov University.
- Sokhin Dmitry Mikhailovich: Student, Institute of Pharmacy, Sechenov University.
- Kakhramanova Sabina Dzheykhuunovna: PhD student, Department of State Pharmacopoeia and pharmacopoeia analysis, Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products”; Institute of Pharmacy, Sechenov University.
- Rendyuk Tamara Danilovna: Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor, Institute of Pharmacy, Sechenov University.
- Strelyaeva Angelina Vadimovna: Doctor of Pharmaceutical Sciences, Associate Professor, Professor, Institute of Pharmacy, Sechenov University.
- Antsyshkina Alla Mikhailovna: Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor, Institute of Pharmacy, Sechenov University.
- Balobanova Natalya Petrovna: Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor, Institute of Pharmacy, Sechenov University.
- Prostodusheva Tatyana Vladimirovna: Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Associate Professor, Institute of Pharmacy, Sechenov University.
- Grikh Victoria Vladimirovna: Candidate of Pharmaceutical Sciences (Ph.D.), Associate Professor, Institute of Pharmacy, Sechenov University.
• **Krasnyuk Ivan Ivanovich (junior):** Doctor of Pharmaceutical Sciences, Professor, Head of Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, Sechenov University.

• **Marakhova Anna Igorevna:** Doctor of Pharmaceutical Sciences, Professor, Head of Institute of Biochemical Technology and Nanotechnology, Peoples’ friendship university of Russia (RUDN University).

• **Moiseev Dmitry Vladimirovich:** Doctor of Pharmaceutical Sciences, Associate Professor, Head of the Chair of Standardization of Medicines, Vitebsk State Medical University.