Introductions
Cancer has been one of the major causes of mortality and morbidity globally and is expected to rise about 70% over the next two decades. It is estimated that over 8.8 million people are dying of cancer every year. Cancer cells grow in all the tissues of the body and initiate their growth and spread to other tissues and organs. Lungs, prostate, liver, and stomach are the most affected regions in men whereas in women, breast, cervix, lungs, and stomach are the most affected regions. Treatment of the illness involves surgical procedures for removal of biomass, radiation followed by chemotherapy to prevent further development of cancer. Given the economic problem and mortality associated with cancer, there is an urgent need for more effective therapeutics.

Natural products have gained more attention in recent years for the treatment of human ailments considering their biological and eco-friendly properties in targeting infected sites with less toxicity to normal cells. Hence, lot of advancements for cancer and other lethal diseases are directly correlated with discovering drugs from natural sources. Therapeutic products from nature offer promising source for investigation of new antagonistic chemical classes with novel mechanism of action.

The first marine organism to be studied for its chemical components is the Caribbean sponge, Cryptotethya crypta. Biotechnology emerged as a study with drug discovery for improving health-care during 1980s and researches has been improving with advanced tools for development of pharmaceutical leads. Here is an overview of significance of marine sources for cancer therapy and anti-tumour lead molecules.

Advantages and Disadvantages of Marine Sources
Advantages of Marine sponge and Fungi
Marine environment has produced many compounds that have potential activity against cancer. Alkaloids, Flavonoids, polysaccharides etc isolated from marine sources are said to have potential activity against cancer. Cytarabine, a marine natural product was extracted from a sponge. It has been found that marine sponges have compounds made by bacteria, hence these bacterial symbionts are said to be the origin of the drugs. Thicoraline, a compound extracted from a marine microorganism stops RNA production and is cytotoxic against several cancer lines. This also stops cell growth in colon cancer cell lines. Metabolites produced by marine fungi are said to have anticancer effects and are not found in terrestrial fungi. Over half of the marine cyanobacteria can be utilized for isolating bioactive compounds that have efficacy in initiating cancer cell death or intervene in the cell signalling process by activating protein kinase. Seaweeds producing metabolites have exhibited activity against cancer too.

Aplidine, an antitumor marine compound is used for Acute Lymphocytic Leukemia. Curacin A extracted from a marine cyanobacterium has potential activity against cancer. Dolastatins, elsatrobin, cephalostatin are some other agents against cancer isolated from marine resources. Synthetic analogues of Dolastatins obtained from *Dollabella auricularia* have antitumor activity. They stop the growth of abnormal mass of tissues from accumulating, arrest cell cycle at metaphase in various cancer cell lines and initiate cell death in lymphoma cells. The coral shows specifically important anticancer features. So, various compounds fighting against cancer are from coral origin. Nitrogenous diterpene analogues have been extracted from the coral and were used to fight several cancer cell line and stops tumour proliferation by 50%.

Disadvantages

A few disadvantages of these compounds must be taken into account, like its production in low amounts, the possible toxins and inorganic salts found from this source, the variety of chemical compounds found in the organism and the presence of non-specific drug targets. For *in vitro* screening measures, limited quantities are required, but in pre-clinical investigations many grams to kilograms are frequently needed for testing. Generally when a marine organism produces toxins, it is said to produce a lot of significant compounds as well. So, more focus should be put on extracting the potent contaminants so as to make marine concentrates good with high efficacy. Controlled aquaculture could maintain a strategic distance from the issue of exhausting the marine ecosystem and could be an achievable alternative to deliver the necessary biomass for production in higher amounts.

SELECTION OF MARINE ORGANISM FOR DRUG DISCOVERY

Demand for novel drugs is on an exponential phase due to changing environment and increase in population. Drug scientists are looking out for new sources to discover effective drugs in order to tackle need of novel therapeutics. Marine environment is biologically diverse and offers variety of resources such as aquatic animals and plants. 32 out of 33 of known animal phyla are derived from ocean while 15 are exclusively found in aquatic environment. Hence, there is immense potential for new pharmaceutical leads with antimicrobial, antitumor, antimalarial properties etc. in the marine ecosystem. These resources are being explored for medicinal purposes since ancient times. One of the classic examples of products that are marine derived is fish oil which is used since old ages. Marine derived medicines are been used for human ailments from around 5000 years ago. The Chinese emperor Fu His, during 2953 BCE imposed fish-derived medicines. Hippocrates in 400 BCE identified antitumor activity with *in vitro* testing having high efficacy. Controlled aquaculture could maintain a strategic distance from the issue of exhausting the marine ecosystem and could be an achievable alternative to deliver the necessary biomass for production in higher amounts.

MARINE SOURCES WITH ANTICANCER POTENTIAL

Ocean constitutes seventy percentage of global area and are biologically rich with almost ninety percentage of this area covered by microflora offering greater possibility for novel drug discovery. Natural products from flora of marine origin emerged during 19th century and has great potential to yield novel principles for cancer therapy. Nearly 22,000 secondary metabolites derived from marine origin. Bioactive molecules from marine sources for instance microorganisms (bacteria, actinomycetes, cyanobacteria, fungi), algae (microalgae and macroalgae like seaweeds), flowering plants like mangroves and invertebrates like sponges, corals, nudibranchs, tunicates etc have been evaluated for bioactivity against different types of cell masses at every stage of cancer progression.

Marine bacteria

Marine derived *Lactobacillus* spp. are reported to possess anti-cancer activity against colon cancer. Bacteria derived from the mollusc *Elsiasiubefescens* produced Maltrolatin-A which could inhibit cancer cells of B16-F10 murine melanoma model. Diverse active biological components for instance Pyrroles, Pseudopeptides, Phenazine, Quinolone, Phthalate etc. have been isolated from *Pseudomonas* of marine origin.

Marine actinomycetes

Actinomycetes are known to be the largest secondary metabolite producers and they include the following genera: *Streptomyces*, *Micromonospora*, *Salinispora*, *Rhodococcus* etc. Seventy five percentage of the actinomycete-derived active leads are from *Streptomyces* spp.

Marine fungi

Many pharmaceutically active marine compounds have been identified from marine derived basidiomycetes, endophytic and filamentous fungi. Marine fungi *Acremonium* spp. produced Acremonin A and *Wardomyces anomalus* yielded a xanthone derivative with cytotoxicity against human cancer cell lines.

References

1. Aplidine, an antitumor marine compound is used for Acute Lymphocytic Leukemia. Curacin A extracted from a marine cyanobacterium has potential activity against cancer. Dolastatins, elsatrobin, cephalostatin are some other agents against cancer isolated from marine resources. Synthetic analogues of Dolastatins obtained from *Dollabella auricularia* have antitumor activity. They stop the growth of abnormal mass of tissues from accumulating, arrest cell cycle at metaphase in various cancer cell lines and initiate cell death in lymphoma cells.

2. The coral shows specifically important anticancer features. So, various compounds fighting against cancer are from coral origin. Nitrogenous diterpene analogues have been extracted from the coral and were used to fight several cancer cell line and stops tumour proliferation by 50%.

3. Disadvantages

A few disadvantages of these compounds must be taken into account, like its production in low amounts, the possible toxins and inorganic salts found from this source, the variety of chemical compounds found in the organism and the presence of non-specific drug targets. For *in vitro* screening measures, limited quantities are required, but in pre-clinical investigations many grams to kilograms are frequently needed for testing. Generally when a marine organism produces toxins, it is said to produce a lot of significant compounds as well. So, more focus should be put on extracting the potent contaminants so as to make marine concentrates good with high efficacy. Controlled aquaculture could maintain a strategic distance from the issue of exhausting the marine ecosystem and could be an achievable alternative to deliver the necessary biomass for production in higher amounts.

4. SELECTION OF MARINE ORGANISM FOR DRUG DISCOVERY

Demand for novel drugs is on an exponential phase due to changing environment and increase in population. Drug scientists are looking out for new sources to discover effective drugs in order to tackle need of novel therapeutics. Marine environment is biologically diverse and offers variety of resources such as aquatic animals and plants. 32 out of 33 of known animal phyla are derived from ocean while 15 are exclusively found in aquatic environment. Hence, there is immense potential for new pharmaceutical leads with antimicrobial, antitumor, antimalarial properties etc. in the marine ecosystem. These resources are being explored for medicinal purposes since ancient times. One of the classic examples of products that are marine derived is fish oil which is used since old ages. Marine derived medicines are been used for human ailments from around 5000 years ago. The Chinese emperor Fu His, during 2953 BCE imposed fish-derived medicines. Hippocrates in 400 BCE identified antitumor activity with *in vitro* testing having high efficacy. Controlled aquaculture could maintain a strategic distance from the issue of exhausting the marine ecosystem and could be an achievable alternative to deliver the necessary biomass for production in higher amounts.

5. MARINE SOURCES WITH ANTICANCER POTENTIAL

Ocean constitutes seventy percentage of global area and are biologically rich with almost ninety percentage of this area covered by microflora offering greater possibility for novel drug discovery. Natural products from flora of marine origin emerged during 19th century and has great potential to yield novel principles for cancer therapy. Nearly 22,000 secondary metabolites derived from marine origin. Bioactive molecules from marine sources for instance microorganisms (bacteria, actinomycetes, cyanobacteria, fungi), algae (microalgae and macroalgae like seaweeds), flowering plants like mangroves and invertebrates like sponges, corals, nudibranchs, tunicates etc have been evaluated for bioactivity against different types of cell masses at every stage of cancer progression.

6. Marine bacteria

Marine derived *Lactobacillus* spp. are reported to possess anti-cancer activity against colon cancer. Bacteria derived from the mollusc *Elsiasiubefescens* produced Maltrolatin-A which could inhibit cancer cells of B16-F10 murine melanoma model. Diverse active biological components for instance Pyrroles, Pseudopeptides, Phenazine, Quinolone, Phthalate etc. have been isolated from *Pseudomonas* of marine origin.

7. Marine actinomycetes

Actinomycetes are known to be the largest secondary metabolite producers and they include the following genera: *Streptomyces*, *Micromonospora*, *Salinispora*, *Rhodococcus* etc. Seventy five percentage of the actinomycete-derived active leads are from *Streptomyces* spp.

8. Marine fungi

Many pharmaceutically active marine compounds have been identified from marine derived basidiomycetes, endophytic and filamentous fungi. Marine fungi *Acremonium* spp. produced Acremonin A and *Wardomyces anomalus* yielded a xanthone derivative with cytotoxicity against human cancer cell lines.
Marine microalgae

Marine cyanobacteria are well-known for screening bioactive molecules many of them are active against cancer cells inducing apoptosis. Activities towards human HeLa tumour cells were detected in vitro in the extracts of Calothrix cells. Calothrixin A and B were able to inhibit cancer cells in nanomolar concentrations. An antiproliferative compound Curacin-A is been isolated from Lyngbya majuscula. This compound also inhibited breast, renal and colon cancer cell lines. Lyngbya boulonnii derived compounds Apratoxin-A and Coibamide A showed activity against adenocarcinoma. Recently Cryptophycin, derived compounds Lyngbya boulloni compound also inhibited breast, renal and colon cancer cell lines. Compound Curacin-A is been isolated from human cell lines. 48

Marine macroalgae

Seaweeds are marine macroalgae which are predominant sources of vitamins, minerals and proteins. Palmaria palmate is an edible seaweed with capability to inhibit proliferation of tumour cells. Dose-dependent suppression of cancer cells were noticed with sulphated polysaccharides produced from algal species. Anti-cancer properties were also identified in the seaweeds Padina boergeseni, Gracilaria folifera, Ulva reticulate and Acanthophora spicifera derived alcoholic extracts.

Marine Sponges

Sponges have contributed to approximately thirty percentage of biological products identified from nature so far. Discovery of Spongomytidemine and Spongouridine from Tethya crypta is considered as a breakthrough in discovery of biologically active natural compounds from sponges. This discovery led to the identification of the anticanic compound Arabinoside. Eribulin is an active breast cancer drug which is a synthetic derivative of Halichondrin B initially isolated from a marine sponge Halichondria okadai.

Mangroves

Mangroves comprise almost ninety percentage of marine plants and are well-distinguished in producing natural compounds with antimicrobial, anti-inflammatory, analgesic and cytotoxic properties. An anti-sarcoma sulphur containing alkaloid is reported from a microbial, anti-inflammatory, analgesic and cytotoxic properties. Many marine-derived antineoplastic agents were reported to show potent growth inhibition in vitro and in murine models in vivo. Cytosine arabinoside, Trabectedin, derivative of Halichondrin B and Brentuximabvedotin have so far been approved for human use. Bryostatin 1 (clinical trial phase I), a tetrahydrosoquinoline alkaloid (ET-743) (phase I) and Dolastatin 10 (phase II) are two marine derived agents that have entered clinical trial phases. The anticancer compounds and targeting cancer cells from marine sources are listed in Table 1. Bryostatin 1 is in clinical phase II for its therapeutic use against melanoma, renal, colorectal and lymphoma. The alkaloid ET-743 is reported to show anti-proliferative activity.

Cytarabine

Ara C or cytosine arabinoside is a chemotherapy drug utilized to cure different forms of leukemia like Acute Lymphotic Leukemia (ALL), Acute Myelogenous Leukemia (AML). It is injected intravenously, or into the cerebrospinal fluid. Cytosine Arabinoside is basically a Cytosine base and an arabinose sugar. The mechanism of action of this compound is because of its fast conversion to Cytosine Arabinoside Triphosphate that harms the DNA and arrests the cell cycle at S phase hindering DNA synthesis.

Trabectedin

Trabectedin is a synthetic antineoplastic compound. It is isolated from the Carribean marine organism Ecteinascidia turbinadata. It gets attached to the minor groove of DNA, arresting the cell cycle & stops cell growth. It intervenes with the transcription coupled nucleotide excision repair pathway. It also stops the development of G2 to M phase of the cell cycle and also stops activated gene transcription. Trabectedin has shown action in vitro and in vivo for a variety of tumour cell lines, human xenografts, melanoma, ovarian, prostate and non-small cell lung cancer.

Halichondrin-B

This compound is a macrocyclic polyster initially extracted from the marine organism Halichondria okadai received in 1986. Its main target is tubulin and the microtubules liable for the development and

Table 1: List of anticancer compounds and targeting cancer cells from marine sources.

<table>
<thead>
<tr>
<th>Marine source</th>
<th>Active compound</th>
<th>Used to treat specific cancer type/cell line</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine sponge</td>
<td>Halenaquinone (HQ)</td>
<td>Molt 4, DLD-1K562 and MDA-MB-231 cell lines</td>
<td>75</td>
</tr>
<tr>
<td>Marine actinomyocyte</td>
<td>Salinosporamide A</td>
<td>melanoma, pancreatic carcinoma, or NSCLC</td>
<td>76</td>
</tr>
<tr>
<td>Antarctic fungus</td>
<td>HDN-1</td>
<td>lung cancer cell lines</td>
<td>77</td>
</tr>
<tr>
<td>Marine sponge</td>
<td>Panicein A hydroquinone</td>
<td>melanoma cells</td>
<td>23</td>
</tr>
<tr>
<td>Marine cyanobacterium</td>
<td>Biselyngbyaside (BLS-1)</td>
<td>HeLa cells</td>
<td>78</td>
</tr>
<tr>
<td>Marine red alga</td>
<td>BDDPM</td>
<td>hepatoma carcinoma cell</td>
<td>79</td>
</tr>
<tr>
<td>Red-Alga associated bacterium</td>
<td>Diacetoxyscirpenol (DAS)</td>
<td>lung cancer cell lines A549</td>
<td>80</td>
</tr>
<tr>
<td>Marine sponge</td>
<td>Pyrroliminoquinone alkaloids</td>
<td>colon and prostatic carcinoma</td>
<td>40</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>Aplysiotaxin (ATX)</td>
<td>Leukemia and breast cancer cells</td>
<td>81</td>
</tr>
<tr>
<td>Marine bacterium</td>
<td>Chromopetide A</td>
<td>prostate cancer cell lines PC3</td>
<td>82</td>
</tr>
<tr>
<td>Mangrove</td>
<td>ZWM026</td>
<td>lung cancer cells</td>
<td>83</td>
</tr>
<tr>
<td>Red Sea soft coral</td>
<td>Pachycladin A</td>
<td>breast cancer cell lines, cervical cancer HeLa cells</td>
<td>84</td>
</tr>
<tr>
<td>Bryozoan</td>
<td>Bryostatin-1</td>
<td>Sarcoma, melanoma, ovarian, cervical cancer</td>
<td>85</td>
</tr>
<tr>
<td>Tunicate Appuldium albicans</td>
<td>Plitidepsin</td>
<td>Multiple myeloma</td>
<td>86</td>
</tr>
</tbody>
</table>
appropriate working of the mitotic spindle. This has been found to restrain the growth of cancer cells with high potential, and research shows that it arrests cell cycle from G2 to M phase by having activity on tubulin or microtubules, that is presently in phase III of clinical stages is an analogue of this compound that has a modified structure compared to the Halichondrin B but has the same power to treat breast cancer.

Brentuximab vendotin\(^{61}\)

Brentuximab Vendotin also called Adcetris, is an anticancer drug made up of an Anti-CD30 antibody connected by a linker to a possible, synthetic drug, mono methylauristatin-E (MMAE). It was accepted in March 2018 by the Food and Drug Administration (FDA) and can be used as medication along with chemotherapy for patients with stage IV clinical Hodgkin lymphoma (CHL). It arrests cell cycle development from G2 to M phase by destroying the cytosolic microtubule network, stopping cancer cell growth and multiplication hence causing death of tumor cells. Its side effects include Neutropenia, Fatigue, Peripheral sensory neuropathy etc. It is mainly utilized as medication for relapsed Hodgkin Lymphoma (HL) and Anaplastic large lymphoma (ALCL).

Dolastatin-10\(^{27,61}\)

This compound is a pentapeptide derived from the marine organism *Dolabella auricularia*. Its mode of action includes the hindrance of tubulin polymerization and nucleotide exchange. It also hinders the tubulin dependent guanosine triphosphate hydrolysis. It is a possible non-competitive impeder of vincristine getting attached to tubulin stopping mitosis. This compound additionally initiates tumor cell death by inducing bcl-2, an oncoprotein that is over expressed in some cancers. Dolastatin 10 additionally has impact on improving the attachment of colchicines to tubulin.

Eribulin\(^{62}\)

Eribulin is a synthetic anticancer agent used to treat metastatic breast cancer. This compound is extracted from Japanese marine organism *Halichondria okadai*. It mode of action is it intervenes with the microtubular growth finally resulting in apoptosis following mitotic blockage. It stops cell cycle development at G2 to M phase and causes tumor suppression. The compound was accepted by the US Food and Drug Administration (FDA) on end of 2010 for metastatic breast cancer. There are two Eribulin based products under research and development. One is a liposomal formulation and another one is an antibody medication combination therapy. They are used as medication for both DNA and RNA viruses for example Herpes Simplex Virus type 1, a powerful immunosuppressant which has possible effectiveness in skin graft and is extremely cytotoxic. It has powerful effect for marine leukemia cells as well. It has finished stage II of human clinical preliminaries for Adenocarcinoma of the kidney epithelial ovarian cancer and metastatic breast cancer. But because of the high level of toxicity in the drug and high rate of anaphylactic responses in patients trials were ended.

Psammaplins from Verongid sponges\(^{85,56,67}\)

Psammaplin-A (PSA) is an anticancer agent derived from Poecillastra and Jaspis species. *Psammaplinaplysilla* sea sponges belong to the same species and Psammaplin-A was first derived from it. Psammaplin-A comprises of an even disulfide and a cystamine linker functionalized on the two sides with tyrosine-derived alpha hydroxyiminoazyl moieties. Psammaplin A has been exhibited to hinder the multiplication of leukemia cells by the initiation of cell death like the development of Bap-1 null cells while making it less toxic to human neuroblastomal SKN cells. This drug is responsible for cell cycle arrest and the initiation of cell death in various human tumor cells.

Dolastatin 15\(^{58,69}\)

This compound is a seven subunit depsipeptide which is isolated from *Dolabella auricularia*, is a possible antimitotic drug fundamentally similar to the drug Dolastatin 10, acquired from the same marine organism. Dolastatin 15 is an anti-neoplastic pseudopeptide that represses tubulin dependent GTP hydrolysis to tubulin yet has been found attached to the RZX/MAY region. The drug has a mechanism of action where it initiates cell death by BCI-2 phosphorylation in various cancer cell types and also a weak tubulin.

Ziconotide\(^{70,71}\)

Ziconotide is the synthetic drug like N-conopeptide MVIIA, found in the venom of *Conus magus*, a marine organism. Ziconotide has potential antinociceptive effects. It specifically binds to the N-type voltage sensitive calcium channels on neurons stopping neurotransmission from primary nociceptive afferents resulting in pain relief.

Ecteinascidin-743\(^{72}\)

It is used as an anticancer agent for liposarcoma and leiomyosarcoma which cannot be removed by surgery or spread to different parts of the body. It is a type of alkylating agent and also known as Trabectidin. The method of activity of Ecteinascidin-743, a marine tetrahydroisoquinoline alkaloid extracted from *Ecteinascidia turbinata* has been found to have powerful antitumor action in pre-clinical systems and promising results in phase I clinical stage.

Current Scope and Future Prospects of Marine Organism in Cancer Therapeutics\(^{73,74}\)

Though marketed cancer drugs are less in number, diverse marine derived compounds with anti-carcinogenic properties are under clinical trials. High toxicity and low efficacy of active principles is the main constraint existing between discoveries and marketing of drug candidates. Six drugs were approved in this decade due to the development of modern screening techniques in isolating drug leads from unexplored marine origin. Several research institutions worldwide have involved in marine pharmacology research. Though there are challenges in drug discovery, several screening strategies are being planned in order to extract anti-cancer principles from marine sources. Hence, several novel drugs with new target mechanism for the treatment of various types of human cancers need to be identified to tackle rising tumour conditions in humans.

CONCLUSION

Anti-cancer activities have been reported in marine resources including microbes, algae, invertebrates, water and sediments. The compounds extracted from these flora showed diverse activity in vitro towards lung, breast, bladder, renal, lymphoid, melanoma and sarcoma cell lines. The mechanism of inhibition such as necrosis, lysis and apoptosis of cancer cells of these marine-derived compounds have also been described. Development in cancer science and natural products have paved way for discovering new active therapeutics. We have discussed in this review, the importance of marine sources in discovering novel bioactive lead compounds, advantages and disadvantages in exploring aquatic resources, list of commercially available drugs and mechanism of action, and also active anti-proliferative secondary metabolites. Though, further detailed studies on this area are needed, marine environment is undoubtedly a promising source for developing novel pharmacological leads.
REFERENCES

GRAPHICAL ABSTRACT

ABOUT AUTHORS

N. Srinivasan is currently working as Assistant Professor in Department of Pharmacy, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, graduated and post-graduated from The Tamil Nadu Dr. M.G.R Medical university, Chennai and Ph.D from Annamalai University. His research is mainly in the field of Liver protective agents from natural sources. His research attention is isolation of metabolites from medicinal plants and study about its biological properties.

P. Pandian is working as an Associate Professor in the Department of pharmacy, Annamalai University. He received his B.Pharm degree and M.Pharm in industrial pharmacy and his Ph.d in pharmacy from Annamalai University, Annamalai nagar, India in 1999, 2001 and 2016 respectively. His research topic include in Marine pharmacology and Herbal technology.

S. Dhanalakshmi, working as Assistant Professor Under Faculty of Pharmacy, Dr.M.G.R Educational and Research Institute, Chennai – 600 077. Her Specialist area of interest is Herbal Formulation and Marine drug development. She received Young Educator and Research Award, on Teachers Day Celebration in the year of 2019. Currently working in the area of Endometrial cancer research by using marine source.