Amelioration of Cisplatin-Induced Kidney Injury by Pometia pinnata

Adrian1, RA Syahputra2,*, Sukirman Lie3, SE Nugraha4, PC Situmorang5

ABSTRACT

Introduction: Cisplatin is one of the most effective anticancer drugs. But using cisplatin can cause very serious nephrotoxicity and acute kidney injury (AKI). Pometia pinnata (PE) or commonly referred to as matao is a typical plant, especially Papua, Indonesia. Pometia pinnata belongs to the Sapindaceae family. This study aimed to determine the nephroprotective activity of the extract ethanol pometia pinnata on rats induced cisplatin. Methods: 30 rats are divided into six groups, each group were contained 5 rats. Group I was a normal group which rats only given CMC (carboxy methyl cellulose). Group II was a negative group which rats injected 7 mg/kg bw of Cisplatin in day 3. Group III was a positive group which rats given vitamin C 1% from day 1 to 7 and in day 3 rats were injected cisplatin. Group IV-VI were extract groups (100 mg/kg bw, 200 mg/kg bw, 400 mg/kg bw) which rats orally given extract from day 1 to 7 and in day 3 rats were injected cisplatin. On day 8 rats were injected ketamine 1% which directly took the blood from the heart. Results: The result shows that EEPE on rats biochemical parameters including urea, creatinine, uric acid. Group II showed that there was a significant increase (p <0.05) compared to the normal group that was not given cisplatin and extracts. Whereas in the group given the extract in groups IV, V, and VI there was a reduction in biochemical parameters because the Pometia leaf extract had high antioxidant activity so that it had nephroprotective activity. extract ethanol pometia pinnata can reduce the level of sodium, potassium and chloride of each group after receiving cisplatin. Statistically group II that only given cisplatin has significantly different with group I (p<0.05) and also statically different with group VI (p<0.05). Key words: Cisplatin, Pometia pinnata, Kidney injury.

INTRODUCTION

Cisplatin (cis-diaminedichloroplatinum II, CDDP) is one of the most effective anticancer drugs. But using cisplatin can cause very serious nephrotoxicity and acute kidney injury (AKI). Nearly 30-40% of cisplatin use in patients causes nephrotoxicity as a result of CDDP accumulation and kidney biotransformation. Until now, only amifostine is widely used as a nephroprotective agent during cisplatin treatment but has side effects such as hypocalcemia, hypotension, and vertigo. Cisplatin can increase biomarkers of kidney damage such as KIM-1 (Kidney injury molecule-1), cystatin C and NGAL (Neutrophil gelatinase)1-4. Two of the largest clinical manifestations of nephrotoxicity due to the use of cisplatin is acute renal failure (20-30%) and hypomagnesemia (40-100%). Acute renal failure can be detected by an increase in Blood Urea Nitrogen (BUN) and serum creatinine. Dialysis costs are expensive and weaknesses of cisplatin chemotherapy supportive therapy that has been provided at this time to encourage research on other materials that can be used as chemoprotective agents to prevent and reduce the use of cisplatin nephrotoxicity.5,6.

The main mechanism of cisplatin is an agent becomes activated intracellularly by akusai one of two groups chloride groups and then covalently binds to DNA, forming a DNA adduct. This process activates various signal transduction pathways, for example, in DNA-damage recognition and repair, cell cycle arrest, and programmed cell death / apoptosis.7 However, the clinical success of cisplatin is limited by cause of severe side effects and intrinsic or acquired resistance during treatment. Unfortunately, resistance has limited the effectiveness of these agents in most diseases. Resistance to platinum-based chemotherapy can be intrinsic or acquired and may be mediated by factors outside or inside cancer cells or on the cell membrane.8,9 The toxicity due to the use of cisplatin is very dangerous, so that in its use, additional therapy is needed, both traditional and modern. Traditional therapy is often used by people, especially in Indonesia, one of which is the use of herbs. Pometia pinnata (PE) or commonly referred to as matao is a typical plant, especially Papua, Indonesia. Pometia pinnata belongs to the Sapindaceae family. Matao fruit has a characteristic and combined taste of rambutan, longan and a little durian taste. PE is cultivated by local people because it has economic value. There is very little research on pometia pinnata, such as the study conducted by Ni wayan, which revealed that the ethanol extract of matao leaves has strong antioxidant activity, qualitative phytochemical screening shows that the ethanol extract of matao leaves contains flavonoids and tannins.10,11 Another study reported that the ethanol extract of the matao fruit peel contains strong antioxidant activity and has antibacterial activity by inhibiting the bacteria Escherichia coli, Bacillus cereus and Staphylococcus aureus. Another study also revealed that the ethanol extract of the matao fruit peel contains high levels of phenols and flavonoids compared to gallic acid and quercetin.12,13 This study aim to determine the nephroprotective activity of Pometia pinnata ethanol extract.
MATERIALS AND METHODS

Extract Ethanol Pometia Pinnata Preparation

700 g powdered dry fruit of *Pometia pinnata* dissolved using 96% ethanol then steer occasionally, then the solution is macerated for 7 days and steer occasionally every day, then the solution is filtered with whatman paper no 1, the filter results are then forgotten using a rotary evaporator under reduced pressure and the solvent is evaporated until crude extract / extract ethanol of PE (EEPE) is obtained. Then performed phytochemical screening (alkaloids, flavonoids, tannins, saponins, glycosides, steroids / triterpenoids).

Animal Handling

30 normal health and wight between 150 - 200 g of rats were used in the experimental study. Rats are placed in plastic cages that are adjusted to a humidity of 40-60% and under dark / light cycle 12 hours. and also rats were given a pellet food from cratachem manufacturing and drink ad libitum.

Research design

30 rats are divided into six groups, each group was contained 5 rats. Group I was a normal group which rats only given CMC (carboxy methyl cellulose). Group II was a negative group which rats injected 7 mg / kgbw of Cisplatin in day 3. Group III was a positive group which rats given vitamin C 1% from day 1 to 7 and in day 3 rats were injected cisplatin. Group IV-VI were extract groups (100 mg / kgbw, 200 mg / kgbw, 400 mg / kgbw) which rats orally given extract from day 1 to 7 and in day 3 rats were injected cisplatin. On day 8 rats were injected ketamine 1% which directly took the blood from the heart.

Biochemical parameters analysis

3 ml of blood from each rat were centrifugated 4000 RPM (5°C) for 10 minutes. Then 0.5 ml of supernatant was put into cobas b 221 for exmining the levels of urea, creatinine, uric acid. Group II showed that there was a significant increase (p <0.05) compared to the normal group that is creatinine, if there is an increase in these levels, it is feared that there will be functional and structural disorders of the kidneys. Creatinine is the end product of muscle creatine phosphate, and usually produced in the end products of muscle metabolism that is excreted in unchanged form via the kidneys. This situation can be fatal. To overcome this, the cause of kidney failure must be addressed or the patient must undergo dialysis to remove urea and other waste products. In this study, it was found that there was an increase in urea and creatinine in cisplatin-induced rats in group II (Tables 1 and 2). There are so many studies that prove that cisplatin causes kidney damage. The mechanisms that contribute to renal dysfunction were exposed to cisplatin is in the form of direct tubular toxicity in the form of apoptosis and necrosis mediated through inflammation, ROS, calcium overload, activation of phospholipase, decreased levels of glutathione, and inhibition of mitochondrial respiratory chain function. It has been reported that administration of 5 ml / kg bw cisplatin (0.1% in saline) by ip acute renal failure in mice within 72 hours after administration, while it has also been reported the occurrence of kidney failure with the same doses.

DISCUSSION

The parameters of kidney damage that are most often used are urea and creatinine, if there is an increase in these levels, it is feared that there will be functional and structural disorders of the kidneys. Creatinine is the end product of muscle creatine phosphate, and usually produced in the end products of muscle metabolism that is excreted in unchanged form via the kidneys. Urea or urea is a protein catabolic waste substance that is formed in the liver and is filtered and reabsorbed in the kidneys. If kidney function is impaired, urea will accumulate in the blood, a condition called uremia. This situation can be fatal. To overcome this, the cause of kidney failure must be addressed or the patient must undergo dialysis to remove urea and other waste products. In this study, it was found that there was an increase in urea and creatinine in cisplatin-induced rats in group II (Tables 1 and 2). There are so many studies that prove that cisplatin causes kidney damage. The mechanisms that contribute to renal dysfunction were exposed to cisplatin is in the form of direct tubular toxicity in the form of apoptosis and necrosis mediated through inflammation, ROS, calcium overload, activation of phospholipase, decreased levels of glutathione, and inhibition of mitochondrial respiratory chain function. It has been reported that administration of 5 ml / kg bw cisplatin (0.1% in saline) by ip acute renal failure in mice within 72 hours after administration, while it has also been reported the occurrence of kidney failure with the same doses.
of cisplatin after five days injected. Model of cisplatin-induced renal failure in mice occurred at doses of 12 mg / kg bw, i.p; 18 mg / kg bb, i.p 16. Failure in mice occurred at doses of 12 mg / kg bw, i.p; 18 mg / kg bb, of cisplatin after five days injected. Model of cisplatin-induced renal growth factor (VEGF) that penetrasi impaired glomerular endothelial with glutathione (GSH) produces reactive thiols which are free radicals. Peptides, RNA, and Glutathione (GSH). The conjugation of cisplatin with proteins and cellular components of microfilaments, cytoskeleton, causing kidney injury and inflammation. Cisplatin in a cell will interact well as improving tumor necrosis tissue factorα, free radicals (ROS), and apoptosis in renal tubules. Cisplatin reduces the activity of nitric inhibition of protein synthesis, DNA damage, mitochondrial injury Damage mechanisms of acute renal failure caused by cisplatin is the induced nephrotoxicity. From analysis result, the portion of cells that Hypoxic tubules were identified by staining pimonidazol on cisplatin-cord. In this zone the kidneys more vulnerable to ischemia and damage. Cisplatin mainly occurs in the proximal tubule S3 segment, perimeter induces apoptosis via the caspase 9 dependent pathway. Hypoxia and inflammation, and fibrogenesis. High cisplatin concentrations can occurs in a complex manner and including oxidative stress, apoptosis, and enzymes June N-terminal kinase / stress-activatedprotein kinase (JNK / SAPK). The mechanism of in vivo cisplatin nephrotoxicity occurs in a complex manner and including oxidative stress, apoptosis, hypoxia and mitochondrial damage also includes the effect of cisplatin-induced nephrotoxicity. Pathological changes induced nephrotoxicity of cisplatin mainly occurs in the proximal tubule S3 segment, perimeter cord. In this zone the kidneys more vulnerable to ischemia and damage. Hypoxic tubules were identified by staining pimonidazol on cisplatin-induced nephrotoxicity. From analais result, the portion of cells that significantly indicates hypoxia renal proximal tubular cells17-20.

Damage mechanisms of acute renal failure caused by cisplatin is the inhibition of protein synthesis, DNA damage, mitochondrial injury and apoptosis in renal tubules. Cisplatin reduces the activity of nitric oxide, monocyte chemoattractant protein-1 and growth factors as well as improving tumor necrosis tissue factors, free radicals (ROS), causing kidney injury and inflammation. Cisplatin in a cell will interact with proteins and cellular components of microfilaments, cytoskeleton, peptides, RNA, and Glutathione (GSH). The conjugation of cisplatin with glutathione (GSH) produces reactive thiols which are free radicals. Thiol reactive causes decreased production of vascular endothelial growth factor (VEGF) that penetrasi impaired glomerular endothelial cells. Thiol reactive also trigger proximal tubular cell death due to oxidative stress so that the necessary antioxidants to cope21. The initial process of biosynthesis of creatine takes place in the kidneys involving amino acids arginine and glycine. Creatine is converted to creatinine in an amount of 1.1% per day. On the formation of creatinine no reuptake mechanism by the body, so most of creatinine excreted through the kidneys. If renal dysfunction occurs, the creatinine filtration ability will decrease and the serum creatinine will increase. Increased levels of serum creatinine doubling indicates a decrease in kidney function by 50%, as well as an increase in serum creatinine levels tripled reflecting a decline in kidney function by 75%22. Kidney disease or blockage of urine flow from the kidney causes increased levels of urea and creatinine. Higher mean serum creatinine levels kidneys do not work properly. Creatinine levels may rise temporarily if dehydrated, have low blood volume, eat a lot of meat or drinking certain drugs. Creatinine dietary supplements may have the same effect23.

Pometia pinnata is known to have high antioxidant activity and contains many secondary metabolites including flavonoids. The flavonoids found in Poemtia pinnata have an important role in reducing the radicalization process caused by cisplatin. The term flavonoids refers to the thousands of plant compounds with the same basic structure, phenylchromane, which allow the formation of several subclasses of flavonoids including flavonols, flavones, catechins, anthocyanidins, isoflavones, dihydroflavonols, and chalcones24. Variable amounts of these compounds are found in vegetables, fruits, nuts, spices, herbs, red wine and tea, among others. Flavonoids are one of the main classes of polyphenols, which have many pharmacological activities, exert antioxidant effect and are known to improve cardiovascular health, but little is known about their role in kidney function and disease25.

CONCLUSION

Ethanol extract of *Pometia pinnata* has nephroprotective effect on rats induced cisplatin by reducing the biochemical parameters such as urea, creatinine, uric acid, sodium, potassium, chloride, NGAL, and MDA while increase the SOD level.

Table 1: Biochemical parameters (Urea, Creatinine, Uric Acid) Levels of each Groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Group I (Mean ± SD)</th>
<th>Group II (Mean ± SD)</th>
<th>Group III (Mean ± SD)</th>
<th>Group IV (Mean ± SD)</th>
<th>Group V (Mean ± SD)</th>
<th>Group VI (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>mg/dL</td>
<td>30.41 ± 2.54*</td>
<td>98.45 ± 5.76</td>
<td>29.15 ± 2.44</td>
<td>54.58 ± 3.81</td>
<td>48.42 ± 3.16</td>
<td>32.41 ± 2.62*</td>
</tr>
<tr>
<td>Creatinine</td>
<td>mg/dL</td>
<td>0.97 ± 0.01*</td>
<td>3.36 ± 0.53*</td>
<td>0.86 ± 0.08*</td>
<td>1.47 ± 0.29</td>
<td>0.91 ± 0.073</td>
<td>0.78 ± 0.062*</td>
</tr>
<tr>
<td>Uric Acid</td>
<td>mg/dL</td>
<td>0.61 ± 0.04*</td>
<td>2.45 ± 0.21†</td>
<td>0.58 ± 0.023*</td>
<td>1.58 ± 0.18</td>
<td>1.02 ± 0.098</td>
<td>0.65 ± 0.044*</td>
</tr>
</tbody>
</table>

*(p < 0.05) significant different from normal group (Group I)
(p < 0.05) significant different from control (-) group (Group II)

Table 2: Biochemical parameters (sodium, potassium, chloride) Levels of each Groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Group I (Mean ± SD)</th>
<th>Group II (Mean ± SD)</th>
<th>Group III (Mean ± SD)</th>
<th>Group IV (Mean ± SD)</th>
<th>Group V (Mean ± SD)</th>
<th>Group VI (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>mmol</td>
<td>140.56 ± 10.22</td>
<td>234.67 ± 20.48*</td>
<td>135.23 ± 9.84</td>
<td>205.66 ± 19.86</td>
<td>152.88 ± 12.41</td>
<td>140.4 ± 10.51†</td>
</tr>
<tr>
<td>Potassium</td>
<td>mmol</td>
<td>5.42 ± 0.48</td>
<td>23.60 ± 2.36</td>
<td>4.88 ± 0.38</td>
<td>18.48 ± 1.86</td>
<td>10.42 ± 0.84</td>
<td>5.28 ± 0.46*</td>
</tr>
<tr>
<td>Chloride</td>
<td>mmol</td>
<td>98.67 ± 7.46</td>
<td>320.67 ± 18.72*</td>
<td>85.21 ± 6.54</td>
<td>250.56 ± 12.65</td>
<td>185.18 ± 10.44</td>
<td>95.86 ± 8.03*</td>
</tr>
</tbody>
</table>

*(p < 0.05) significant different from normal group (Group I)
(p < 0.05) significant different from control (-) group (Group II)

Table 3: NGAL, SOD, and MDA Levels of each Groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Group I (Mean ± SD)</th>
<th>Group II (Mean ± SD)</th>
<th>Group III (Mean ± SD)</th>
<th>Group IV (Mean ± SD)</th>
<th>Group V (Mean ± SD)</th>
<th>Group VI (Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum NGAL</td>
<td>ng/mL</td>
<td>0.130 ± 0.047*</td>
<td>0.5839 ± 0.342*</td>
<td>0.1634 ± 0.036*</td>
<td>0.4237 ± 0.151</td>
<td>0.347 ± 0.019</td>
<td>0.1217 ± 0.021*</td>
</tr>
<tr>
<td>SOD</td>
<td>pg/mL</td>
<td>10.45 ± 0.58</td>
<td>24.48 ± 1.08*</td>
<td>15.67 ± 0.86</td>
<td>16.58 ± 0.93</td>
<td>24.62 ± 1.05*</td>
<td>5.47 ± 0.058*</td>
</tr>
<tr>
<td>MDA</td>
<td>µM/L</td>
<td>12.87 ± 0.69</td>
<td>44.01 ± 0.353*</td>
<td>40.10 ± 0.24</td>
<td>6.45 ± 0.081</td>
<td>5.47 ± 0.058*</td>
<td>5.47 ± 0.058*</td>
</tr>
</tbody>
</table>

*(p < 0.05) significant different from normal group (Group I)
(p < 0.05) significant different from control (-) group (Group II)
REFERENCES

Adrian, et al.: Amelioration of Cisplatin-Induced Kidney Injury by Pometia pinnata

GRAPHICAL ABSTRACT

Pometia pinnata powder

Pometia Pinnata Ethanol Extract

CISPLATIN

UREUM
CREATININE
URIC ACID

NGAL
SOD
MDA

SODIUM
POTASSIUM
CHLORIDE
ABOUT AUTHORS

Dr. dr. Adrian Khu, Sp.OT, FICS, AIIO is active lecture in Faculty of Medicine, Universitas Prima Indonesia. His also as an active Medical Orthopedic and active in orthopedic and pharmacology research.

Rony Abdi Syahputra, M.Farm is an active biology lecture in Department of Pharmacology, Faculty Pharmacy, Universitas Sumatera Utara, His also active in pharmacology research especially in toxicology and cardiovascular research. his active as journal reviewer and writing paper in international journal.

Dr. Putri Cahaya Situmorang, M.Si is an active biology lecture in Department of Biology, Faculty mathematic and natural sciences, Universitas Sumatera Utara, She is also a scientist in Pharmacology, Histology, Physiology and biomedical sciences. She is active as journal reviewer and writing paper in international journal.

dr. Sukirman Lie, M. Biomed is active lecture in Akademi Keperawatan Colombia Asia Medan. His also as an active medical aesthetic and active pharmacology research.

Sony Eka Nugraha, S.Farm., M.Si., Apt is an active biology lecture in Department of Pharmaceutical Biology, Faculty Pharmacy, Universitas Sumatera Utara, His also active in pharmacology and biological research. his active as journal reviewer and writing paper in international journal.

Cite this article: Adrian, Syahputra RA, Lie S, Nugraha SE, Situmorang PC. Amelioration of Cisplatin-Induced Kidney Injury by Pometia pinnata. Pharmacogn J. 2021;13(5): 1257-1268.