Min Rahminiwati1,4,*, Trivadila2,4, Dyah Iswantini2,4, Hiroshi Takemori3, Mamoru Koketsu3, Rut Novalia Rahmawan Sianipar2, Suminar Setiati Achmadi2,4, Ahmad Sjahrizi2, Betty Marita Soebrata2, Armi Wulanawati2

ABSTRACT
Indonesia is a tropical country with mega-biodiversity. Several medicinal plants locally have been recognized for their anti-inflammatory properties and are traditionally used to help treat respiratory diseases. Chronic obstructive pulmonary disease (COPD) is one of the diseases known as the high cause of death globally, and one of the treatment efforts is by using anti-inflammatory drugs. In developing alternative remedies for COPD, this review summarizes the potential of Indonesian medicinal plants and their ingredients known to have an anti-inflammatory activity to develop alternative remedies for COPD. Primarily, we focus on the medicinal plants that have been scientifically proven to pose some biological activities, such as legetan warak (Adenosotemma laevian), celery (Apium graveolens), peagagan (Centella asiatica), kēnikir (Cosmos caudatus), and kœseran (Muntingia calabura). This review is expected to provide more information about Indonesian medicinal plants and their potencies to be developed as COPD herbal medicine and, further, as a treatment to help patients suffering from coronavirus disease (COVID-19).

Key words: Anti-inflammatory, Bioactive compounds, Biological activity, Chronic obstructive pulmonary disease, Indonesian medicinal plants.

INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory lung disease with irreversible obstructions in the respiratory tracts, initially causing shortness of breath and finally resulting in death from respiratory failure.1 The pathological findings of COPD are characterized by the destruction of airway epithelial cells accompanied by impaired immune systems with harmful endogenous intracellular molecules and nonspecific inflammatory responses.2 According to the World Health Organization (WHO), COPD is triggered by persistent inhalation of an irritant or toxin, such as cigarette smoke and microscopic particles (PM 2.5). In addition to shortness of breath, excessive phlegm production and chronic cough are common symptoms in the early stage of the disease progression.3 In addition, during the progression, the symptoms shift to chronic bronchitis, bronchiolitis, and emphysema. According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD), COPD increases morbidity and mortality globally.4 In 2019, an estimated 3.23 million deaths were caused by this disease.4

Inflammation, a response to pathogens or damaged tissues, is the key symptom of COPD. Inflammation is often associated with fever, swelling, pain, and skin redness. Several biochemical indicators (enzyme activity, fluid extravasation, release of mediators, and cell migration) are used to evaluate the severity.5 The inflammatory processes in various immune and endothelial cells are initiated by viral/bacterial infection and cell/tissue damage. In some cases, the immune system mistakenly activates inflammatory responses even when no injury appears.6 The inflammatory process through enzyme activity begins with the formation of prostaglandins from arachidonic acid with the help of the enzyme cyclooxygenase (COX). There are two types of COX enzymes, namely COX-1 and COX-2. The former, COX-1, is the widely distributed enzyme that plays a role in platelet aggregation, stimulated by prostanoids and thromboxane. The COX-2 enzyme is induced by inflammation and plays a role in producing prostaglandins, mediators of fever, pain, and tissue damage.7 COPD is associated with an increased number of leukocytes, such as neutrophils, macrophages, CD8-T, and Th17 lymphocytes, as well as airway epithelial cells and fibroblasts in the lungs. These inflammatory cells release various mediators, such as leukotriene B4, interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), transforming growth factor-beta (TGF-β), chemokines-like cytokine (CC) and CXC (two N-terminal cysteines separated by one amino acid), neutrophil elastase (NE), and matrix metalloproteinase (MMP)-2, 9, 12, which damages the lungs.8 However, no or fewer treatments for COPD have been established. Some options for people with COPD are symptomatic therapies, changing to a better lifestyle, quitting smoking, and regular exercise. Therefore, patients with COPD need medication to reduce pain and inflammation. Some drugs, pain killers classified into non-steroidal anti-inflammatory drugs (NSAIDs), alleviate pain and inflammation by inhibiting COX-2, followed by

© 2022 Phcog.Com. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
the reduced formation of prostaglandins.7 However, these drugs have side effects: gastric pain, kidney failure, gastrointestinal tract disease, and diabetes.8 Therefore, currently, many alternative medicines using herbal plants are being developed.

Our research group at Tropical Biopharmaca Research Center (Trop BRC) of IPB University is conducting a study on several Indonesian medicinal plants to analyze their potential as anti-inflammatory through inhibiting the activity of COX-2 enzyme in vitro, including legetan warak (Adenostemma lavenia), kenikir (Cosmos caudatus), kersen (Muntingia calabura), and red ginger (Zingiber officinale Linn. Var Rubrum). These plants grow in some areas in Indonesia and have anti-inflammatory activity.9-12 In addition, some other medicinal plants, such as celery (Apium graveolens), and pegagan (Centella asiatica),13,14 have also been studied and shown to have some biological activities and efficacies, including as antigout13,14 and antihypertensive.15 Therefore, it is thought that it may have potency as an anti-inflammatory.

This review covers the traditional use and scientific evidence of medicinal plants to treat inflammation and respiratory tract diseases and discusses the bioactive ingredients in these plants. By conducting a deeper literature study of these plants, we summarize their potencies and discusses the bioactive ingredients in these plants. By conducting

METHODS

We searched the articles from PubMed (https://pubmed.ncbi.nlm.nih.gov/). Using its advanced search feature, we filled the keywords and filtered the articles by the field of “Title/Abstract.” If the results were less than 100 articles, we continued to select the articles with related topics, but if the results were more than 100 articles, we filtered again by the publication date from 2018/01/01 to 2020/11/30 selected the articles with related topics. Some articles with related topics might not include in this study. The keywords used were: “adenostemma lavenia”; “adenostemma lavenia” AND “inflammation”; “adenostemma lavenia” AND “inflammation;” “adenostemma lavenia” AND “pulmonary disease;” “apium graveolens” OR “celery”; “apium graveolens” OR “celery” AND “inflammatory;” “apium graveolens” OR “celery” AND “inflammation;” “apium graveolens” OR “celery” AND “pulmonary disease;” “centella asiatica;” “centella asiatica” AND “inflammatory;” “centella asiatica” AND “inflammation;” “centella asiatica” AND “pulmonary disease;” “cosmos caudatus” AND “inflammatory;” “cosmos caudatus” AND “inflammation;” “cosmos caudatus” AND “pulmonary disease;” “muntingia calabura;” “muntingia calabura” AND “inflammatory;” “muntingia calabura” AND “inflammation;” “muntingia calabura” AND “pulmonary disease.”

Adenostemma lavenia

Adenostemma lavenia (L.) Kuntze is distributed in Southeast Asia, Pakistan, India, and China. In Indonesia, this plant is known as *legetan warak*, *udu tai*, and *rupmut babi*, categorized as a weed. Belong to the Asteraceae family, it is a valvate-herb with sticky and hairy plant, having white pink-dotted flowers. Plants in this group have some varieties, including *A. lavenia* (L.) Kuntze var. *latifolia* and *A. lavenia* (L.) Kunte var. *lavenia*. Some literature also mentions this plant as having the synonym of *A. viscosum* Forst. & Forst.f.16-19 while other sources state that *A. lavenia* (L.) Kunte and *A. viscosum* Forst. & Forst.f. are distinct species and *legetan warak* known in the Java region as *A. viscosum* Forst. & Forst.f.20

A. lavenia is traditionally known to have several properties. The leaves effectively treat dysuria, aphthae, sore throat, sunburned skin, dysentery, and are used as an antispasmodic (as a reliever of muscle pain). Crushed leaves and stems are applied topically and believed to be effective for healing wounds, skin diseases, ulcers, headaches, toothaches, chest pain, diarrhea (rubbed on the stomach), and insect and caterpillar bites. A mixture of leaf paste and milk is used to treat dizziness. This fresh plant juice is also believed to effectively treat ear infections, reduce swelling and inflammation, and treat respiratory diseases such as lung congestion and pneumonia. The decoction of leaves and coconut water is gargled to treat toothaches. Moreover, this plant is also used in veterinary medicine to treat eye infections in chickens and skin disease.20

Several groups of secondary metabolites such as alkaloids, flavonoids, steroids, and terpenoids have been reported by workers.21-24 The alkaloids include 4-O-[3-acetyl-1-(trimethylsilyl)-1H-indolyl]-D-glucose; 5H-1-pyrindine; 3-methylinololide; 1-cyano-3-methylicosinolone; 6,7-dihydro-3-nitro-5H-cyclopenta[8] pyridin-2 (1H)-one; and 5,10-diocthy-2,3,7,8-tetrahydro-1H, 6h-dipyrollo[1,2-A; 1', 2'-D] pyrazine.22 Meanwhile, the phenolics that have been reported are p-coumaric acid15; 4-allyl-2,6-dimethoxyphenol; and coniferyl alcohol.22 The terpenes derived from 11-oxygenated kauran-19-olic acids that have been isolated include ent-11α,15α-dihydroxykaur-16-en-19-oic acid (Figure 1A); ent-11α-hydroxy-15α-acetoxykaur-16-en-19-oic acid (Figure 1B); ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (Figure 1C); (16R)-ent-11α-hydroxy-15-oxoacur-19-oic acid (Figure 1D) and adenosanominoic acid A-G.25-28 Linocelec acid has also been found.22 These compounds have been shown to have several biological activities. Anti-tumor activity with low nonspecific cytotoxicity activity against LS174Y leukemia cells was shown by ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid and adenosanominoic acid B, and prolonged the survival of mice implanted with sarcoma-180.29

The anti-melanogenic, antiaging, and antioxidant activities were also exhibited. The aqueous extracts and chloroform fraction, rich in *ent*-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid, show antilglycation

activity in vitro. In addition, this water extract and chloroform fraction also show anti-melanogenic activity against murine melanoma B16F10 cell line. Antioxidant activity was demonstrated in vitro and at the cellular level against Schizosaccharomyces pombe yeast by improving its growth and longevity. Moreover, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oxic acid activates nuclear factor E2-related factor 2 (Nrf2), which leads to the expression of the heme oxygenase (HO-1) gene in B16F10 cells. P-coumaric acid obtained from the ethyl acetate fraction of the ethanol extract of A. lavenia (EAAL) has also been reported to have antioxidant effects by activating the antioxidant enzymes, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as the protein expressions of HO-1 and Nrf2 in LPS-stimulated cells and lung in mice. These show the potential of this herb to be developed as an antiaging agent and a drug for treating patients with aging-related skin disorders, such as melasma.

The anti-inflammatory effect was studied in vitro using the murine macrophage RAW 246.7 cell line and an animal model of mice. Macrophages were stimulated with lipopolysaccharides (LPS) and mice to create acute lung injury (ALI). All plant parts were extracted using 75% ethanol, followed by fractionation using n-hexane, ethyl acetate, and butanol (BuOH). The EAAL showed the best anti-inflammatory activity compared to the other two fractions, which has been shown to reduce the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). The EAAL also reduced histological changes in lung tissue in ALI mice, inhibited inflammatory cell infiltration and protein concentration in bronchoalveolar lavage fluid (BALF). The EAAL prevented the protein expression of inducible NO synthase (iNOS) and COX-2, phosphorylation of IκB-α, MAPKs, and AMP-activated protein kinase (AMPK). The study we conducted on 70% ethanolic extract of A. lavenia to the in vitro inhibition assay of COX-2 also showed the potential as an anti-inflammatory (unpublished data).

Apium graveolens

Apium graveolens (L.) (family: Apiaceae), also known as celery, was first cultivated as a food plant in Europe, especially in France and Italy, and spread throughout the world, including Indonesia (local name: seleder). The roots of this plant are short and thick, the stems are branched and stiff, the leaves are thin and ovate, and the flowers are small and greenish-white in color.

Celery is used in Ayurvedic medicine. The seeds, roots, and herbs are antisapmosdic laxatives, nerve sedatives, anticonvulsants, diuretics, menstrual smoothers, and breastfeeding agents. In powder form, this plant treats diarrhea, rheumatism, kidney problems, dysentery, hoarseness, indigestion, and loss of appetite. This plant is also used as an insect repellent. The green leaves are eaten to stop bleeding in the mouth and problems in the lungs. African people use this plant to treat stomach aches, lower blood pressure, and increase breast milk. At the cellular level against *Schizosaccharomyces pombe* yeast by improving its growth and longevity. Moreover, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oric acid activates nuclear factor E2-related factor 2 (Nrf2), which leads to the expression of the heme oxygenase (HO-1) gene in B16F10 cells. P-coumaric acid obtained from the ethyl acetate fraction of the ethanol extract of *A. lavenia* (EAAL) has also been reported to have antioxidant effects by activating the antioxidant enzymes, catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as the protein expressions of HO-1 and Nrf2 in LPS-stimulated cells and lung in mice. These show the potential of this herb to be developed as an antiaging agent; and a drug for treating patients with metabolic syndrome diseases such as hypertension, hyperglycemia, hyperlipidemia, and obesity. The antioxidant activity, both in *vitro* and cellular level, has been widely reported.

Antioxidant capacity is closely related to its potential for the treatment of some diseases caused by free radicals and oxidative stress, such as tumors, neurologic disease, autoimmune disease, and inflammation.

The mechanism of the anti-inflammatory activity of celery has been studied in *vitro*, in cell culture, and in *vivo* models. The isolated active compounds from seeds inhibit the COX-2 enzyme in *vitro*. Luteolin has also been shown to suppress the expression of COX-2 mRNA in carrageenan-induced mice. Moreover, luteolin can also reduce the release of TNFα, IL-6, and IL-1β in rat blood treated with bisphenol-A. The activity as a hepatoprotector has also been demonstrated in luteolin. Celery seeds extracted by supercritical fluid CO2 and added to RAW 246.7 macrophages treated with oxidized low-density lipoprotein have been demonstrated to reduce the release of pro-inflammatory cytokines, TNFα, and IL-6. The same response has also been shown in the isolated isofraxin when added to human hepatocyte carcinoma HepG2 cells treated with oleic acid.

Water and methanol extracts decrease the release of TNFα and IL-1β into the blood in Wistar rats treated with acetaminophen. Hydrolyzed ethanol extract and apigenin have also been shown to reduce the mRNA expression for pro-inflammatory molecules in Th1, Th2, and Th17 in the splenocyte in BALB/c mice treated with concanavalin A. The expression of IL-1β and IL-6 mRNA in LPS-induced rats can also be suppressed by NBP treatment. Celery has traditionally been used to treat allergic and respiratory diseases, such as asthma. In addition, NBP has also been studied to protect against memory impairment caused by exposure to chronic intermittent hypoxia-hypercapnia (CIHH), which is also responsible for COPD pathogenesis.

Celery should be developed as a COPD drug in future studies, especially its anti-inflammatory properties.

Centella asiatica

Centella asiatica (L.) (family: Apiaceae), also known as *gotu kola*, is a plant that grows in tropical Asia. The local name in Indonesia is *pegagan*, *dain tapak kuda*, and *antanan*. It is a small, herbaceous plant that grows throughout the year and grows vines. The stem is creeping, has many branches, and each of these branches will form new plants. The leaves are in the form of kidney stones; at the tip of the leaf, the edges are serrated and located around the stem. The flowers will appear in the axillary area and continue to form like an umbrella, and usually, there are three white or pink flowers. It has small oval-shaped fruit and tastes bitter but has a fragrant smell.

Pegagan is traditionally used as an anti-inflammatory, antidiote, diuretic, fever reliever, and antiaging. Besides, it can also treat skin diseases, including ulcers and acne, jaundice, digestive tract disorders, diarrhea, venereal disease, malaria, cough, and tuberculosis, and improve brain function. This herb is also used as a blood purifier to treat high blood pressure and antiaging. In Bangladesh, it is also believed to treat central nervous system diseases, such as mental disorders, memory loss, and insanity. In Indonesia, however, it is consumed as a vegetable or processed into herbal medicine (*jamu*), which is believed to be a longevity remedy and is used to improve blood circulation, smooth skin; treat joint pain and coughs.
Figure 2: Compounds isolated from celery (*A. graveolens* (L.)): (A). apigenin; (B). apiin; (C). caffeic acid; (D). chlorogenic acid; (E). luteolin; (F). 3-n-butyphthalide (NBP); and (G). sedanolide.

Figure 3: Compounds isolated from *C. asiatica* (L.): (A). asiaticoside; (B). asiatic acid; (C). madecassosid; (D). madecassic acid.
The properties of *C. asiatica* have been studied extensively. These plant extracts, either singly or in combination, have some potencies including antioxidant, antiinflammatory, heptoprotector, neuroprotector, anti hypertensive, antibacterial, and an agent for preventing eye damage. Several compounds, including from the phenolic groups such as flavonoids and isoprenoids (terpenoids and saponins), have been isolated and have also been studied to have extensive biological activity. The pharmacology includes kaempferol and quercetin. In addition, caffeoylquinic acid has also been studied and has the potential to improve cognitive function in mice modeled on Alzheimer’s disease.

This plant’s main triterpenoids include asiaticoside, asiatic acid, madecassoside, and madecassic acid (Figure 3). These compounds have been reported to have healing properties and can be used for skincare, such as acne medication, and helps disengage stretch marks and keloids. In addition, it is also known as an anti-inflammatory, cardioprotector, and neuroprotector. The Eca233 standardized extract containing the four triterpenoid compounds has been tested for safety. Asiaticoside (Figure 3A) has been shown to have properties as an anti-inflammatory, lung protector, neuroprotector, and antiinflammatory agent on the bone (bone protector). Asiaticoside D is known to inhibit the activity of monoamine oxidase-B, whose dysfunction is implicated in neurodegeneration and behavioral disorders, being recognized asiaticoside D as a potential neuroprotector. Asiatic acid (Figure 3B) has pharmacological properties such as antioxidant, anti-inflammatory, antiinflammatory, anti-depressant, anti-hyperglycemia, anti hypertensive, anti hyperlipidemic, anti-tumor, and anti-cancer such as breast, prostate, colon, liver, lung, and nerve cancers. In addition, asiatic acid also has anti-obesity properties. Madecassoside (Figure 3C), the major compound, is known to have some potencies as anti-rheumatoid arthritis and osteoarthritis.

Asiaticoside can downregulate the NF-kb signaling pathway in LPS-induced RAW 264.7 macrophages. In addition, this compound also asiaticoside can downregulate the NF-κb signaling pathway in LPS-TNFα and IL-6 in mice with septic lung injury. Asiaticoside, asiatic acid, madecassoside, and madecassic acid (Figure 3D) is reported to have an anti-inflammatory effect.

The efficacy of *C. asiatica* as a lung protector is thought to be due to its anti-inflammatory effects. In general, the anti-inflammatory mechanism is through suppressing the activity of inflammatory mediator (such as prostaglandin [PGE2]) formation and release by decreasing the expression of COX-2 mRNA and the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL1β) mRNA. The asiaticoside can downregulate the NF-kb signaling pathway in LPS-induced RAW 264.7 macrophages. In addition, this compound also decreases the expression of COX-2 protein and the production of TNFα and IL-6 in mice with septic lung injury. Asiaticoside, asiatic acid, madecassoside and madecassic acid have been studied to have a similar effect on LPS-induced ALI mice, and also, they could inhibit pulmonary inflammation and fibrosis response in mice. Pulmonary fibrosis and inflammation are the process of COPD development.

In addition, the bioactive triterpenoids could also inhibit the migration and invasion of human lung cancer (A549) cells induced by radiation ionization in radiotherapy. These findings show that *C. asiatica* is a latent material to be developed as an alternative treatment for patients with COPD.

Cosmos caudatus

C. caudatus is a plant spread in tropical areas, including Indonesia, with the local name *keren* or need. It is a tree plant with small red fruits, called *ceri* (not *Prunus cerasus*) or *seri*. Traditionally, this herb is used for sedation, cold and flu medicines, relieves muscle tension and spasms, controls blood pressure, and induces sweating. In addition, the flowers and stems are used to reduce swelling and as an antiseptic. The decoction of leaves is believed to be able to treat gastric ulcer disease and treat headaches.

The secondary metabolites encompass flavones, flavonols, isoflavones, flavanones, isoflavones, phenolic acids, anthocyanidins, kavalactone, and anthraquinone. The flowers include 5,7-dihydroxy-3,8-dimethoxyflavone; 5-hydroxy-3,7-dimethoxyflavone; 3,5,7-trihydroxy-8-methoxyflavone; 5-hydroxy-3,7,8-trimethoxyflavone; and calabar酮. The chalcone compounds are 2',4-dihydroxychalcone; 2',4-dihydroxy-3'-methoxychalcone; and isoliquiritigenin. The terpenes that have been reported are β-farnesene and dundrolacin. Other compounds include galloclatechin, epigallocatechin, naringenin, quercetin, gallic acid, gentisic acid, caffeic acid, protocatechuic acid, cyanidin-3-O-glucoside, and 1,2-benzene dicarboxylic acid disoctyl ester. Metabolomic analysis shows that of the 43 metabolites identified, 32 were compounds with biological activities. This plant material has been reported to be a candidate material for anticancer, antimicrobial, antinociceptive, cardioprotector, antibacterial, antioxidant, and anti-gastric ulcer and gastroprotector. Hepatoprotector, antispasmodic, and antiatherosclerotic.

The potency of *C. caudatus* as an anti-inflammatory can be caused by inhibiting lipoxigenase (LOX) activity, inhibiting paw swelling carrageenan-induced, paw of an animal model suppressing COX-2 expression, inhibiting the formation of prostaglandins and pro-inflammatory cytokines (TNFα, IL-1β, and IL-6). Our study showed that ethanol extract could inhibit COX-2 activity in vitro. Although it has not been widely reported regarding the anti-inflammatory activity of *C. caudatus*, especially in the lung, further

Inflammatory studies conducted on the carrageenan-induced mouse model showed that *C. caudatus* reduced the volume of paw swelling by more than 50%. An in vitro anti-inflammatory study reveals that the ethanol extract can inhibit COX-2 activity moderately. Combining this herb with other plants is thought to be able to increase its anti-inflammatory properties (unpublished data) and develop it as an alternative treatment for COPD.

Muntingia calabura

Muntingia calabura L. (family: Muntingiaceae, only one species) is a plant spread in tropical areas, including Indonesia, with the local name *kersen* or *keren*. It is a tree plant with small red fruits, called *ceri* (not *Prunus cerasus*) or *seri*. Traditionally, this herb is used for sedation, cold and flu medicines, relieves muscle tension and spasms, controls blood pressure, and induces sweating. In addition, the flowers and stems are used to reduce swelling and as an antiseptic. The decoction of leaves is believed to be able to treat gastric ulcer disease and treat headaches.

The secondary metabolites encompass flavones, flavonols, isoflavones, flavanones, isoflavones, phenolic acids, anthocyanidins, kavalactone, and anthraquinone. The flowers include 5,7-dihydroxy-3,8-dimethoxyflavone; 5-hydroxy-3,7-dimethoxyflavone; 3,5,7-trihydroxy-8-methoxyflavone; 5-hydroxy-3,7,8-trimethoxyflavone; and calabar酮. The chalcone compounds are 2',4-dihydroxychalcone; 2',4-dihydroxy-3'-methoxychalcone; and isoliquiritigenin. The terpenes that have been reported are β-farnesene and dundrolacin. Other compounds include galloclatechin, epigallocatechin, naringenin, quercetin, gallic acid, gentisic acid, caffeic acid, protocatechuic acid, cyanidin-3-O-glucoside, and 1,2-benzene dicarboxylic acid disoctyl ester. Metabolomic analysis shows that of the 43 metabolites identified, 32 were compounds with biological activities. This plant material has been reported to be a candidate material for anticancer, antimicrobial, antinociceptive, cardioprotector, antibacterial, antioxidant, and anti-gastric ulcer and gastroprotector. Hepatoprotector, antispasmodic, and antiatherosclerotic.

The potency of *M. calabura* as an anti-inflammatory can be caused by inhibiting lipoxigenase (LOX) activity, inhibiting paw swelling carrageenan-induced, paw of an animal model suppressing COX-2 expression, inhibiting the formation of prostaglandins and pro-inflammatory cytokines (TNFα, IL-1β, and IL-6). Our study showed that ethanol extract could inhibit COX-2 activity in vitro. Although it has not been widely reported regarding the anti-inflammatory activity of *M. calabura*, especially in the lung, further
studies of its potency as an anti-inflammatory in the respiratory tracts can be carried out. More investigations on this plant can be continued using inflammatory cells or animal models for pneumonia.

CONCLUSION

This literature study concluded that all the five plants have the potencies to be developed as anti-inflammatory and COPD herbal medicine, even though further studies still need to be performed to explore their efficacies, especially for C. caudatus and M. calabura. In addition to their potencies as anti-inflammatory and COPD herbal medicine, these plants can be further developed as an alternative option to give a contribution to treating patients with COVID-19.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

ACKNOWLEDGEMENTS

The authors would like to thank the Ministry of Education and Culture of the Republic of Indonesia for granting this work through the Penelitian Terapan Kompetitif Nasional scheme year 2022 and the Japan Society for The Promotion of Science (JSPS: No. JPJSBP120218102 and 20KK0125).

ABBREVIATIONS

COPD Chronic Obstructive Pulmonary Disease
COX-2 Cyclooxygenase-2
IL Interleukins
NBP 3-n-butylphthalide
NSAIDs Non-steroidal anti-inflammatory drugs
TNFα Tumor Necrosis Factor alpha

REFERENCES

Pharmacognosy, Vol 14, Issue 4, July-Aug, 2022

Rahminiwati M, et al.: Indonesian Medicinal Plants with Anti-inflammatory Properties and Potency as Chronic Obstructive Pulmonary Disease (COPD) Herbal Medicine

164. Liao HR, Chen JJ, Chen YH, Lin SZ, Lin S, Tseng CP. 5-hydroxy-7-
me thoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-
induced superoxide anion production by specific modulate membrane
localization of TACE with a PI3K independent mechanism in human

165. Kuo WL, Liao HR, Chen JJ, Biflavans, flavonoids, and a
dihydrochalcone from the stem wood of Muntingia calabura and
their inhibitory activities on neutrophil pro-inflammatory responses.

166. Zolkeffel NKZ, Ismail NA, Maulidiani M, Hamid NAA, Ramli NS,
Azlan A. Metabolite variations and antioxidant activity of Muntingia
calabura leaves in response to different drying methods and ethanol
ratios elucidated by NMR-based metabolomics. Phytochem Anal.

167. Sulfan AS, Ramasamy K, Ahmad N, Zakaria ZA, Yusof MIM. Isolation
and identification of antibacterial and cytotoxic compounds from the

168. Yusof MIM, Salleh MZ, Kek TL, Ahmad N, Azmim NFN, Zakaria ZA.

169. Lin JT, Chang YY, Chen YC, Shen BY, Yang DJ. Molecular
mechanisms of ethanolic extract from Muntingia calabura Linn. fruit
against lipopolysaccharide-induced pro-inflammatory mediators in

170. Lin JT, Chen YC, Chang YZ, Chen TY, Yang DJ. Effective
compounds in the fruit of Muntingia Calabura Linn. cultivated in
Taiwan evaluated with scavenging free radicals and suppressing

171. Pereira GA, Arruda HS, Morais DR, Eberlin MN, Pastore GM.
Carbohydrates, volatile and phenolic compounds composition, and
antioxidant activity of calabura (Muntingia calabura) L. fruit. Food

174. Nasir NLM, Kamsani NE, Mohtarunn N, Othman F, Tohid SFM, Zakaria ZA. Anticarcinogenic activity of Muntingia calabura leaves
methanol extract against the azoxymethane-induced colon cancer in
rats involved modulation of the colonic antioxidant system partly

175. Jisha N, Vysakh A, Vijesh V, Latha MS. Ethyl acetate fraction of
Muntingia calabura L. exerts anti-colorectal cancer potential via

Extract of Muntingia calabura L. mitigates 1,2-dimethyl hydrazine

177. Shih CD, Chen JJ, Lee HH. Activation of nitric oxide signaling

178. Shih CD. Activation of nitric oxide/cGMP/PKG signaling cascade
mediates antihypertensive effects of Muntingia calabura in

179. Zakaria ZA, Sulaiman MR, Jais AMM, Somchit MN, Jayaraman
KV, Balakhrisnan G, et al. The antinociceptive activity of Muntingia
calabura aqueous extract and the involvement of -arginine/nitric

180. Zakaria ZA, Mustapha S, Sulaiman MR, Jais AMM, somchit MM, Abdullah FC. The Antinociceptive activity of aqueous extract from
Muntingia calabura leaves:The role of opioid receptors. Med Princ Pract.
2007;16(2):130-6.

181. Sani MHH, Zakaria ZA, Balan T, Teh LK, Salleh MZ. Antinociceptive
activity of methanol extract of Muntingia calabura leaves and the

182. Zakaria ZA, Sani MHH, Cheema MS, Kader AA, Tek TL, Salleh MZ.
Antinociceptive activity of methanolic extract of Muntingia calabura

183. Nivethetha M, Jayarsi J, Brindha P. Effects of Muntingia calabura L.
on isoproterenol-induced myocardial infarction. Singapore Med J.

185. Zakaria ZA, Mahmood ND, Mamat SS, Nasir N, Omar NH. Endogenous antioxidant and LOX-mediated systems contribute to the hepatoprotective activity of aqueous partition of methanol extract of Muntingia calabura L. leaves against paracetamol intoxication. Front Pharmcol. 2018;8(92):1-

of methanolic extract of Muntingia calabura L. leaves in Carrageenan

187. Zakaria ZA, Mahmood ND, Omar NH, Taher M, Basir R. Methanol
extract of Muntingia calabura leaves attenuates CCl4-induced liver injury:
possible synergistic action of flavonoids and volatile bioactive compounds on

189. Zakaria ZA, Balan T, Suppiah V, Ahmad S, Jamaludin F. Mechanism(s)
of action involved in the gastroprotective activity of Muntingia calabura. J

192. Halim SZ, Zakaria ZA, Omar NH, Mohtarunn N, Wahab IRA, Abdullah
MNH. Synergistic gastroprotective activity of methanolic extract of a

193. Zakaria ZA, Mahmood ND, Omar NH, Taher M, Basir R. Methanol
extract of Muntingia calabura leaves attenuates CCl4-induced liver injury:
possible synergistic action of flavonoids and volatile bioactive compounds on

194. Rofiee MS, Yusof MIM, Hisam EEA, Bannur Z, Zakaria ZA, Somchit MM.
Mixture of Melastoma malabathricum and Muntingia calabura leaves
in wistar rats involved modulation of the colonic antioxidant system partly

195. Vadivel K, Rani NM, Pradeepkrishna CH, Manoharbabu S. Ex-
GRAPHICAL ABSTRACT

1. *Adenostemma lavenia* (Legetan warak)
 - A. 11-oxygenated kauran-19-oic acid
 - B. ent-11α-hydroxy-15α-acetoxykaur-16-en-19-oic acid
 - C. ent-11α-hydroxy-15-oxo-kauran-16-en-19-oic acid

2. *Apium graveolens* (Celery)
 - E. apigenin
 - F. apiin
 - G. caffeic acid
 - H. chlorogenic acid
 - I. luteolin
 - J. 3-n-butylphthalide (NBP)
 - K. sedanolid

3. *Centella asiatica* (Pegagan)
 - L. asiaticoside
 - M. asiatic acid
 - N. madecassoside
 - O. madecassic acid

4. *Cosmos caudatus* (Kenikir)
 - Flavonoids, α-tocopherol, cyclohexen-1-carboxylic acid, benzoic acid, myo-inositol, stigmasterol, lycopene, chlorogenic acid

5. *Muntingia calabura* (Kersen)
 - Flavones, flavonols, isoflavones, flavanones, chalcones, terpenes, phenolic acids, anthocyanidins, kavalactone, anthraquinone

Anti-inflammatory and some biological activities

COVID-19 treatment
ABOUT AUTHORS

Min Rahminiwati is a lecturer and researcher at the Faculty of Veterinary Medicine, IPB University, Indonesia. She is also a veterinary doctor. Her primary research interest is in pharmacological study related to the potency of Indonesian herbal medicine as anti-obesity, anti-inflammatory, antimicrobe, antihypertension, antidiabetic, antiarrhythmic, analgetic agent, and hepatoprotection.

Trivadila is a lecturer and researcher at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. She has been working on in vitro enzymatic kinetics studies related to bioactivities, including antioxidant, anti-inflammatory, antigout, antihypertension, anti-obesity, and anti-allergy activities.

Dyah Iswantini is a Professor at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. She is an expert on secondary metabolites for anti-obesity, antigout, anti-inflammatory, and antihypertension from kinetics and thermodynamic point of view.

Hiroshi Takemori currently works at the Department of Chemistry and Biomolecular Science, Gifu University, Japan. Hiroshi is interested in Molecular Biology research.

Mamoru Koketsu is a Professor at the Department of Chemistry and Biomolecular Science, Gifu University, Japan. His research areas are searching for active compounds from local food and plants, structure modification through organic synthesis, and structure-activity relationship.

Rut Novalia Rahmawati Sianipar is a master’s student at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. She is currently conducting thesis research on inhibition kinetics of traditional medicinal plants toward xanthine oxidase as antigout therapy.

Suminar Setiati Achmadi is a Professor at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. She is an expert on natural product chemistry, primarily focused on the secondary metabolites from the Indonesian archipelago.

Ahmad Sjahriza is a lecturer at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. His research interest is in computational chemistry for molecular properties of medicinal plants applied in silico using molecular mechanics and density functional theory.

Betty Marita Soebrata is a lecturer at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. She has been working on the synthesis of hydrogels based on natural ingredients such as alginate, carrageenan, and microbial cellulose with the addition of antibacterial substances; evaluated the antibacterial activity and potential of these antibacterial hydrogels as wound dressings.

Armi Wulanawati is a lecturer at the Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia. Her research areas include screening potential drugs for cancer and COVID-19 in silico.