Functional Beverages from Blends of Ficus Deltoidea Leaves and Brown Rice Powders: Physico-Phytochemical Properties, Antioxidant Activities, Sensory Evaluation and Acute Toxicity Study

Nur Ain Sabrina Azmi1, Nurdiana Samsulrizal1,*, Siti Aimi Sarah Zainal Abidin1, Noor Syaffinaz Noor Mohamad Zin1, Norol Hamiza Zamzuri2, Yong Meng Goh3, Ana Sharmila Shafie1, Rohaizad Abdul Raoof5

Abstract

Background: Ficus deltoidea (Ficus: Moraceae) has great potential as a functional food. Administration of *F. deltoidea* has been reported to reduce hyperglycemia, oxidative stress and increase insulin secretion in diabetic rats and humans. However, the poor bioavailability and intestinal absorption of *F. deltoidea* impede its therapeutic effectiveness at a lower dosage, thus integrating *F. deltoidea* into brown rice will provide additional advantages. This study aimed to examine the phyto-physicochemical profile, antioxidant properties, consumer acceptance, and safety of beverages formulated from fine powder mixtures of *F. deltoidea* leaves and brown rice. **Methods:** The new beverage formulations were prepared by mixing the fine powders of *F. deltoidea* leaves with brown rice at ratios of 1:6 and 1:13, respectively. Physicochemical, phytochemical, and antioxidant analyses were performed to characterize the prepared beverages. Consumer acceptance was assessed utilising a 9-point hedonic scale and an acute toxicity study was employed to determine the safety of *F. deltoidea*-added formulations. **Results:** *F. deltoidea* decreased the pH and increased the moisture content, ash, and viscosity of a brown rice beverage. The total phenolic, flavonoid, and tannin content as well as antioxidant activities increased significantly in both *F. deltoidea*-added formulations. The oral LD₅₀ of the *F. deltoidea*-added formulation was higher than 2000 mg/kg body weight. **Conclusions:** These results suggest that adding *F. deltoidea* leaves to brown rice beverages is safe to consume and improves the phyto-physicochemical profile, antioxidant activities, and consumers’ acceptance of the formulation. **Key words:** Animal study, DPPH assay, FRAP assay, Functional beverages, 9-point hedonic scale.

Introduction

Nutrition is an important aspect of living a healthy lifestyle. According to World Health Organization, good nutrition has been linked to better health at all ages, a lower risk of disease, and a longer life. Concerns about health, particularly during the COVID-19 epidemic, have spurred interest in functional foods and beverages that promote good health. Functional beverages contain phytochemicals derived from plants that function in the body to prevent the onset of certain non-communicable diseases. These natural functional beverage products are in limelight because of their therapeutic potential due to an array of phytochemical compounds which protect against various diseases. Functional beverages derived from plants are not only intended to satisfy hunger, and provide humans with necessary nutrients but also have a role in health promotion and disease prevention due to antioxidant compounds present in plants. *Ficus deltoidea* Jack is one of the most well-known natural plants locally known as mas cotek in Malaysia. It is traditionally used by the Malay community for health maintaining purposes where different parts of the plant are used for the treatment of several conditions such as relief of headache (fruit part), toothache (fruit part), and sores and wound (roots and leaves). The decoction of boiled leaves of *F. deltoidea* is traditionally used as an antidiabetic treatment and an after-birth tonic to contract the uterus and vaginal muscles, to treat disorders of the menstrual cycle, and also to treat leucorrhoea. The anti-inflammatory, anti-oxidative, antimicrobial, anti-inflammatory, anti-arthritic, anti-photaging, wound healing, anti-cancer, anti-diabetic, and cytotoxicity effects of *F. deltoidea* has also been extensively reported. It has been demonstrated that *F. deltoidea* leaves contain an array of phytochemical compounds such as flavonoids, tannins, phenols and terpenoids. The use of this plant as alternative traditional medicine for non-communicable diseases is gaining attention with the sale of tea bags and capsules of *F. deltoidea* in the local market. Nevertheless, it has been reported that some of the active compounds have poor bioavailability and intestinal absorption, thus a higher dosage of *F. deltoidea* is required to obtain the therapeutic effects. Consuming more than one litre of *F. deltoidea* tea per day has been reported to cause hypermagnesemia and manganese toxicity. Brown rice is one of the whole-grain food in Asian countries. It can be used as a functional food or beverage to satisfy dietary and nutritional demands. It has been shown that brown rice can counteract...
Physicochemical properties

The pH was measured by using the pH meter (Mettler Toledo, Germany).30 Solubility and swelling power were analyzed by mixing an amount of 0.35 g of the samples with 12.5 mL of distilled water before being heated in a water bath of 60°C for 30 min with constant agitation. After centrifugation at 3500 x g for 20 min (Model 5420, Kubota, Japan), the supernatant was decanted in a pre-weighed evaporating dish to calculate the solubility. Swelling power was calculated by weighing the residue after centrifugation and divided by the original weight of the samples.31 Water and oil absorption capacities (WAC and OAC) were calculated using a method proposed by.32 Two g of samples were mixed with 20 mL distilled water for WAC and refined soybean oil for OAC. The mixture was allowed to stand at ambient temperature (32°C) for 30 min followed by centrifuging for 30 min at 3000 rpm or 2000 g x Model 5420, Kubota, Japan). WAC and OAC were expressed as percent water or oil bound per gram of sample such as follow:

\[
\text{Water or oil absorption capacity} = \frac{\text{Weight of water or oil absorbed}}{\text{Weight of sample}}
\]

Moisture content was estimated by the oven drying method. Ash content was quantified using the method AOAC (2003). The viscosity of NBR, FB1 and FB2 was measured by mixing 35 g of each sample with 250 mL of hot water (80-90°C). The solutions were stirred thoroughly to avoid any lump formation. Viscosity was measured by inserting the solution into the Brookfield DV-I viscometer (U.S.A) with spindle No.1 at 100 rpm. The viscosity reading in centipoises (cP) after 30 seconds of rotation was recorded (Fmna and Zailan, 2019). The color of samples was measured by chromometer CR400 (Konica Minolta, Japan). L*, a* and b* parameters indicate lightness (100 = white; 0 = black), greenness (+ red; − green) and yellowness, (+ yellow; − blue), respectively. The white calibration plate CMA101 was used for calibration. Measurement was performed in triplicate.33

Qualitative phytochemical screening

Phytochemical screening of samples (NBR, FB1 and FB2) was performed according to the standard method described by34 to ascertain the presence of phenolics, flavonoids, tannins, cardiac glycosides, alkaloids, terpenoids and steroids.

Quantitative analysis of phenolics, flavonoids and tannins contents

A chemical test was carried out on the beverages using a standard procedure to identify the constituents as total phenolics, total flavonoids and total tannins. The total phenolic contents of NBR, FB1 and FB2 were determined using Folin–Ciocalteau reagent by a method of35 with some modification. A 30 µL aliquot of the infusion samples was mixed with 150 µL of the Folin–Ciocalteau reagent in a 96-well microtiter plate. After 3 min at room temperature, 50 µL of saturated sodium carbonate was added. The mixture was incubated in a water bath at 37°C for 30 min. The absorbance was measured triplicate at 750 nm using a UV-Vis spectrophotometric microplate reader. Gallic acid was used as the reference standard and the results were expressed as mg of gallic acid equivalents (0.0005 – 0.5 mg/mL).

A method proposed by36 was used as a guideline with some modifications to determine total flavonoid contents using aluminium chloride (AlCl₃) complex-forming assay. Each infusion sample (30 µL), distilled water (125 µL) and 5% sodium nitrite (7.5 µL) were added to a 96-well microtiter plate. After 6 min, 15 µL of 10% AlCl₃ solution was added and the mixture was allowed to stand for 5 min. Sodium hydroxide (1M 50 µL) and distilled water (22.5 µL) were added to bring the total volume to 250 µL. Absorbance was read at 510 nm (Biochrom Libra S22, Santa Barbara, CA, USA). Quercetin was used as standard. Results were expressed in quercetin equivalents per gram of dry beverage (QE/g), through a calibration curve of quercetin (0.0005 – 5.0 mg/mL).

The total tannins contents were determined using the potassium iodate (KIO₃) test adopted from.37 Tannic acid was prepared in concentrations of 0, 0.005, 0.05, 0.5 and 5 mg/mL in distilled water as standard solutions for calibration. Five mL of 2.5% KIO₃ solution, preheated for seven min at 30°C were mixed with one mL of tenfold diluted extracts. The mixture was placed in a thermostatic bath at 30°C for 2 min and the absorbance was measured at 550 nm (Biochrom Libra S22, Santa...
Barbara, CA, USA). The total tannins contents were expressed as mg tannic acid equivalent (TAE) per g dry weight. All samples were analyzed in triplicate.

Antioxidant activities

The antioxidant capacity of NBR, FB1 and FB2 was quantified using ferric reducing antioxidant power assay.39 FRAP reagent was freshly prepared using 300 mM sodium acetate buffer pH 3.6, 20 mM ferric chloride hexahydrate and 10 mM 2,4,6-Tris (2-pyridyl) s-triazine (TPTZ), Fluka, Ireland; in 40 mM HCl, Fisher-Scientific, Ireland, in the ratio of 10:1:1, v/v/v and was incubated in a water bath at 37°C for 5 min. In a 96-well microtiter plate, 100 µL of FRAP reagent were added to 50 µL of infusion samples. The mixture was incubated for 10 min at 25°C followed by a reading of the absorbance at 593nm. Gallic acid was used as standard. Results were expressed in Gallic acid equivalent per gram of dry sample (GA/g), extrapolated from a calibration curve of Gallic acid (0.0005-0.5 mg/mL).

DPPH radical-scavenging method was used to analyze the antioxidant capacity of NBR, FB1 and FB2.40 A 50 µL aliquot sample and 200 µL of 0.5 mM methanolic DPPH were mixed in a 96-well microtiter plate. The mixture was thoroughly mixed and kept in the dark for 1 hour. The absorbance was measured at 517 nm using microplate reader spectrophotometers. Samples were measured in triplicate. The percentage of DPPH scavenging activity was calculated as below:

\[
\text{Percentage inhibition of} \text{DPPH} (\%) = \frac{\text{Abs control} - \text{Abs sample}}{\text{Abs control}} \times 100
\]

Sensory evaluation test

An acceptance test was conducted on the sensory evaluation of formulated beverages in terms of appearance, colour, aroma, taste, aftertaste and overall liking. Fifty untrained panelists were invited to participate in this evaluation. All of them are undergraduate and postgraduate students from Universiti Teknologi Mara (UiTM) with ages ranging from 18 to 40. The evaluation was conducted in the Sensory Laboratory at the Faculty of Applied Sciences in UiTM under ambient temperature and fluorescent light. Tissue, plain water and spit cup were given to all panelists on a tray. The panelists were briefed on the definition of descriptive terms before sensory evaluation sessions. Three samples were given to panelists which consists of 1) control (NBR), 2) 2.5 g of F. deltoidea in NBR and 3) 5.0 g of F. deltoidea in NBR. The samples were given a random numerical code to avoid bias. Samples arrangements between panelists were also arranged differently to avoid positional or order bias. Each of the samples was served to them in paper cups with three-digit random numbers labelled to them. Panelists were required to rinse their mouths after each sample evaluation before going for the next sample. Panelists then had to answer a sensory evaluation form that had a 9-point hedonic scale for each sample for the attribute mentioned. The evaluation was based on their degree of like (scale 1-9) where 1 = dislike extremely and 9 = like extremely. Samples with mean scores of more than 5.00 for overall acceptability were considered acceptable.

Acute toxicity testing

The acute toxicity study was conducted in accordance with Organization for Economic Co-operation and Development (OECD) Guideline 423 (OECD, 2001). The welfare and handling of the experimental animals were according to the OECD Guidelines for the Testing of Chemicals 420 (2001) and were approved by Animal Research and Ethics Committee, Universiti Teknologi Mara (UiTM CARE) with an approval number: UiTM CARE: 325/2020. All experiments were performed on female Sprague Dawley rats aged six weeks (mean body weight, 250 ± 5g) that were purchased from Chenur Supplier Sdn Bhd., Serdang, Selangor. A total of 12 female rats was divided into two groups with n=6 animals per group (were housed n=3 per cage according to OECD guidelines). The group was labelled as CT (control group) and FB2 (treatment group). FB2 group was selected based on the result of physicochemical, phytochemical, antioxidant activities and sensory evaluation tests among the NBR, FB1, and FB2. Animals in the CT group received saline as the treatment vehicle (1 ml/ 100 g bwt), while animals in the FB2 group received the functional beverages formulated with F. deltoidea leaves. The treatment was administered using oral gavage at a single dose of 2000 mg/kg bwt with a volume of 1 ml/ 100 g bwt. The further limit test was conducted at the same dosage when there is no animal died.

Animals were fasted from food for 12 hours prior to dosing. Animals were observed periodically during the first 24 hours after administration of the beverages and assessment was continued for 14 days. The toxic symptoms such as skin and fur changes as well as mortality were recorded. Throughout the experimental period, the physical parameters that indicate the toxicity effects of formulated beverages such as mortality, skin, tremors, convulsion, pupils, salivation, lacrimation, food intake and water intake were observed and recorded daily. Changes in body weight were measured weekly.

At the end of the acute study, animals were fasted overnight and anesthetized by intraperitoneal injection of ketamine and xylazine (were provided by Fakulti Perubatan Veterinar Universiti Putra Malaysia) at a dose of 0.01 ml/g body weight. The blood samples (5-10 ml) were collected by cardiac puncture into EDTA-containing tubes for haematological analysis. The liver and kidney were excised and weighed. These organs were preserved in a fixation medium of 10% buffered formalin for histopathological study. The relative organ weight was calculated based on the following formula:

\[
\text{Relative organ weight} (g) = \frac{\text{Absolute organ weight} (g)}{\text{Weight of rats on sacrifice day (g)}} \times 100
\]

Statistical analysis

All data were analysed with the statistical package for the social sciences (SPSS) 21.0 software. An analysis of variance (ANOVA) was used to analyze data from the physicochemical properties, quantitative analysis of phenolics, flavonoids, tannins, antioxidant activities, sensory test and acute toxicity study. Differences between groups were performed on all variables using one-way ANOVA. Duncan’s multiple comparison test was employed to elucidate significant means. Results were presented as the mean ± SEM. All analysis was performed at 95% confidence level.

RESULTS

Physicochemical properties

Table 2 summarizes the physicochemical properties of NBR, FB1, and FB2. It is noticeable that the FB2 had the lowest pH and L* values but recorded the highest value of moisture, ash, and viscosity. Meanwhile, FB1 only showed significant changes in pH, moisture, viscosity, L* and B* values as compared to NBR.

Qualitative phytochemical screening

Table 3 shows the result of qualitative phytochemical screening of NBR, FB1 and FB2. Phenolics, flavonoids, tannins, saponins, cardiac glycosides, alkaloids, terpenoids and steroids were strongly present in the FB2 but moderately and slightly present in the FB1 and NBR, respectively. However, steroids were only present in the FB1 and FB2.

Quantitative analysis of phenolics, flavonoids and tannins contents

The quantitative phytochemical analysis of NBR, FB1 and FB2 are shown in Figure 1. The total phenolics, flavonoids and tannins contents were recorded highest in the FB2 (TPC: 11.36 ± 0.12; TFC: 27.40 ± 2.56; TAN: 10.42 ± 0.21). The high levels of phenolics, flavonoids and tannins in FB2 were due to the presence of F. deltoidea leaves, which are known to be rich in these compounds.
Table 2: Physicochemical properties of NBR, FB1 and FB2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NBR</th>
<th>FB1</th>
<th>FB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.83 ± 0.04</td>
<td>6.50 ± 0.02</td>
<td>6.34 ± 0.00</td>
</tr>
<tr>
<td>Swelling Power (g)</td>
<td>2.52 ± 0.59</td>
<td>3.08 ± 0.09</td>
<td>3.33 ± 0.08</td>
</tr>
<tr>
<td>WAC (%)</td>
<td>182.33 ± 3.37</td>
<td>168.27 ± 12.45</td>
<td>170.43 ± 6.58</td>
</tr>
<tr>
<td>OAC (%)</td>
<td>146.80 ± 3.00</td>
<td>144.00 ± 9.41</td>
<td>144.70 ± 8.11</td>
</tr>
<tr>
<td>Solubility (%)</td>
<td>9.21 ± 0.76</td>
<td>10.22 ± 0.44</td>
<td>11.03 ± 0.16</td>
</tr>
<tr>
<td>Moisture (%)</td>
<td>6.92 ± 0.04</td>
<td>7.09 ± 0.07</td>
<td>7.27 ± 0.01</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>2.43 ± 0.08</td>
<td>2.75 ± 0.09</td>
<td>3.51 ± 0.14</td>
</tr>
<tr>
<td>Viscosity (cP)</td>
<td>27.07 ± 0.15</td>
<td>40.93 ± 0.15</td>
<td>42.77 ± 0.09</td>
</tr>
<tr>
<td>Lightness (L*)</td>
<td>66.24 ± 0.38</td>
<td>60.19 ± 0.03</td>
<td>53.41 ± 0.26</td>
</tr>
<tr>
<td>Greenness (a*)</td>
<td>-1.96 ± 0.04</td>
<td>-1.88 ± 0.04</td>
<td>-1.09 ± 0.14</td>
</tr>
<tr>
<td>Yellowness (b*)</td>
<td>0.65 ± 0.32</td>
<td>14.72 ± 0.20</td>
<td>16.73 ± 0.10</td>
</tr>
</tbody>
</table>

Values are mean ±SEM for triplicate reading of samples. Values with different superscripts in a row differed significantly at p < 0.05. *Key: WAC = Water absorption capacity; OAC = Oil absorption capacity.

Table 3: Phytochemical screening of NBR, FB1 and FB2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>NBR</th>
<th>FB1</th>
<th>FB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolics</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Steroids</td>
<td>-</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Key: - (Absent); + (Present, low); ++ (Present, mild), +++ (Present, strong)

Figure 1: Quantitative analysis of phenolics, flavonoids and tannins contents of NBR, FB1 and FB2. (A) Total phenolic content of the samples. (B) Total flavonoid content of the samples. (C) Total tannins content of the samples. Data are presented as mean ± SEM. Values with different superscripts are significantly different at p < 0.05.
0.97; TTC: 2.07 ± 0.04), moderate in the FB1 (TPC: 10.95 ± 0.03; TFC: 21.88 ± 0.38; TTC: 1.89 ± 0.03), and lowest in the NBR (TPC: 10.10 ± 0.08; TFC: 17.46 ± 1.58; TTC: 1.75 ± 0.04).

Antioxidant activities

Antioxidant activities of NBR, FB1 and FB2 are shown in Figure 2. Results show that the FB2 (6.26 ± 0.04) had the highest antioxidant activities as compared to the FB1 (6.24 ± 0.01) and NBR (7.17 ± 0.03). The highest value of IC₅₀ was recorded in NBR (5.81 ± 0.04).

Sensory evaluation test

The sensory characteristics of the functional beverage prepared from brown rice and F. deltoidea powder are shown in Figure 3. The analysis indicates that there was a statistical difference in taste and aftertaste between the control and formulated beverages. All the samples were considered acceptable due to the mean scores of more than 5.00 for overall liking parameters.

Acute toxicity testing

Administration of FB2 at a single dose of 2000 mg/kg bw caused no adverse effects on the tested rats. Neither sign of toxicity nor mortality of rats were recorded during the 14 days of the experimental period. Morphological features such as skins, pupils, fur and nose appeared to be normal as shown in Table 4. No salivations, tremors, convulsion and lacrimation were observed. All the rats were in healthy condition until the end of the experimental period.

Food intake and water intake

The effects of FB2 administration on food and water intake were shown in Figures 4A and B respectively. The intake of FB2 beverages causes a significant reduction in food consumption in the treated group as compared to the control group. Meanwhile, there is no significant difference between the control and treated groups in the amount of water intake.

Changes in body weight

Figure 4C shows the effects of FB2 intake on body weight. Administration of FB2 beverage at 2000 mg/kg bw causes no significant changes in the body weight.

Relative organ weight

The effects of FB2 administration on the relative organ weight were shown in Figure 4D. It was noted that there were no statistical
Figure 4: Effects of FB2 administration. A) Food intake B) Water intake. C) Body weight changes D) Relative organ weight. Data are presented as mean ± SEM. Values with different superscripts are significantly different at p < 0.05.

Figure 5: Light photomicrograph of liver and kidney sections from control and treated groups. Tissues were collected, processed and stained with hematoxylin-eosin. (A) Control group showed normal architecture of the liver. Hepatocytes: H, central vein: CV, sinusoids: S and Kupffer Cell: KC are in normal morphology. (B) Treated group showed normal architecture of the liver. Hepatocytes: H, central vein: CV, sinusoids: S and Kupffer Cell: KC are in normal morphology. (C) Control group showed a normal appearance of the kidney. Glomerulus: G, Bowman space: BS, distal convoluted tubule: DCT, afferent: A and efferent: E tubule are in normal morphology. (D) Treated group showing normal appearance of the kidney. Glomerulus: G, Bowman space: BS, distal convoluted tubule: DCT, afferent: A and efferent: E tubule are in normal morphology. Images are representative of six animals per experimental group (magnification 40X).

Table 4: Morphological features for control and treated groups.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Control group</th>
<th>Treated group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 m</td>
<td>4 h</td>
</tr>
<tr>
<td>Skins</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Pupils</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Fur</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Nose</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Salivations</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Tremors</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Convulsion</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lacrimation</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mortality</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Key: m = minute, h = hour, d = day, N = normal.

Table 5: Effects of FB2 intake on haematological parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control group</th>
<th>Treated group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet (s)</td>
<td>154.17 ± 31.13</td>
<td>120.83 ± 227.21</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>46.96 ± 1.46</td>
<td>43.27 ± 1.84</td>
</tr>
<tr>
<td>Haemoglobin (%)</td>
<td>232.65 ± 0.00</td>
<td>236.23 ± 3.58</td>
</tr>
<tr>
<td>Neutrophil (%)</td>
<td>31.67 ± 7.78</td>
<td>44.00 ± 1.71</td>
</tr>
<tr>
<td>Eosinophil (%)</td>
<td>4.33 ± 0.71</td>
<td>4.33 ± 0.56</td>
</tr>
<tr>
<td>Basophil (%)</td>
<td>1.50 ± 0.43</td>
<td>1.17 ± 0.31</td>
</tr>
<tr>
<td>Lymphocyte (%)</td>
<td>53.83 ± 8.69</td>
<td>42.50 ± 1.54</td>
</tr>
<tr>
<td>Monocyte (%)</td>
<td>8.67 ± 0.49</td>
<td>7.83 ± 0.95</td>
</tr>
</tbody>
</table>

Values are mean ±SEM for triplicate reading of samples.

differences for both liver and kidney relative weight between the control and treated groups.

Haematological analysis

The assessment of the haematological parameters of the experimental animals revealed no significant differences between the control and treated groups. Table 5 shows the effects of FB2 intake on haematological parameters.

Histological analysis

Histological evaluations of the liver and kidney sections are shown in Figure 5. The results of the treated group demonstrated no abnormalities were detected in the pathological examinations of the tissues as compared to the control group. Liver sections of animals treated with FB2 beverages (Figure 5B) showed normal architecture with a normal appearance of the central vein: CV, sinusoids: S, Kupffer cell: KC and hepatocytes: H similar to the control group (Figure 5A). The cross-section of kidneys from both the control and treated groups demonstrated the appearance of the glomerulus: G, Bowman space: B, distal convoluted tubule: DCT, afferent: A and efferent: E tubule structures were normal (Figure 5C and 5D).

DISCUSSIONS

The physicochemical analyses of the samples demonstrated that the incorporation of F. deltoidea leaves into brown rice resulted in a significant decrease in the pH value and an increase in the moisture and ash (Table 2). Similar findings have been reported in several herbal tea beverages commonly found in markets such as Lipton ice lemon tea, traditional blackcurrant tea, and raspberry mix (strawberry and loganberry).48 Beverages with a pH below 7.0 have been reported to help the digestion of food and ensure the proper absorption of mineral elements in an acidic environment in the stomach.44,50 This finding suggests that a higher amount of F. deltoidea added to brown rice would improve intestinal absorption. The study also revealed that the moisture content of FB2 beverage was significantly increased with higher proportions of F. deltoidea leaves as compared to NBR and FB1. This data was in accordance with the previous study by46 on the instant Sorrel (Zobo) drinks and47 on the instant mango drink powder. It has been demonstrated that the moisture content below 14% help in preventing bacterial, fungal, and yeast growth.59 Minimisation of moisture level inhibits the growth of bacteria and ensures the longer preservation of food, which is an ideal solution when appropriate storage is not available.60 It is interesting to suggest that the addition of F. deltoidea leaves into beverage make it suitable for the prevention of microbial growth and chemical changes for safe storage. A significant increase in ash content in FB2 was also noted by the addition of F. deltoidea into brown rice. This result was in agreement with the previous report on the composite biscuit made of brown rice flour and wheat flour.61 It has been reported that ash content has a correlation with the presence of minerals and could reflect the nutritional value of the product.62 It is conceivable that the addition of F. deltoidea leaves into brown rice could improve the amount of high dietary fiber and mineral content in the FB2 as compared to NBR and FB1. The high nutritional content of the beverage would be of nutritional value in most developed nations, where many residents are unable to afford well-nutritional foods due to high prices.63

Viscosity determines the acceptability of beverages and is regarded as the “mouth feeling” parameter.74,75 The data in the present study show that the viscosity of formulated beverages increased significantly with the higher addition of F. deltoidea leaves into brown rice. Similar findings have been obtained in milk barberry drinks with higher incorporation of the pectin concentration.70 It has been reported in the earlier studies that the viscosity of beverages can decline impact on hunger.76 The greater viscosity enabled the consumers better bolus control and time to prepare for the onset of the pharyngeal swallow to engage the airway protective system, thereby reducing the risk of aspiration.77 Indeed, these findings are in good accordance with the ability of incorporation of F. deltoidea leaves into brown rice to increase the perceived satiety and reduced the effect of starvation.

The color of formulated beverages is significantly affected by the amount of F. deltoidea leaves added into brown rice. As shown in Table 2, the higher
ratio of *F. deltoidea* leaves to brown rice had significantly increased the darkness, greenness and yellowness of the beverages. This observation is in line with a previous study reported by on the color of *Cosmus caudatus* herbal tea prepared from young leaves. The relationship between color and antioxidant properties has been reported in an earlier study. The color of the sample is influenced by the antioxidant activities of the sample which the higher the antioxidant activity, the darker the color of the sample. have demonstrated that the darker samples were found to have higher antioxidant activity due to the presence of the higher phenolics, flavonoids and carotenoids content in the sample. The darkness of the color somehow seems to be correlated to an elevation of the concentration of the phytochemical compounds. Therefore, it is reasonable to suggest that the incorporation of *F. deltoidea* leaves into brown rice could affect its color and improve the antioxidant capacity.

The qualitative and quantitative phytochemical screening was conducted to identify and quantify the bioactive compounds found in beverage-plant based. The addition of *F. deltoidea* leaves into brown rice improved the presence of phenolics, flavonoids, tannins, saponins, cardiac glycosides, alkaloids, and terpenoids as compared to NBR. This finding was consistent with data reported by that detected the presence of tannins, phlobatannins, saponins, flavonoids, steroids, terpenoids, cardiac glycosides, alkaloids, anthraquinones and polyphenols in leaves and callus of *F. deltoidea* Jack var. *kunstleri*. It was also noted that the addition of *F. deltoidea* leaves contributed to the presence of steroids in the FB1 and FB2. This observation was similar to the study demonstrated by that showed the presence of steroids in milk and dairy food product. Previous work had demonstrated that the presence of steroids may exert physiological and pharmacological activities by producing an inhibitory effect on inflammation disorder. The consumption of plant steroids has been shown can decrease bile acid secretion which may lead to a decreased risk for colon cancer development. However, long-term treatment of steroids has been reported to produce adverse effects such as immunosuppression, hypotension, osteoporosis, and metabolic disturbances including the increased susceptibility to infections and adrenal insufficiency. Such harmful side effects limited the use of steroids in food and beverage for daily use which contradicts our findings. Indeed, steroids are frequently the most effective therapy available, and their use is only constrained daily use which contradicts our findings. Indeed, steroids are frequently harmful side effects limited the use of steroids in food and beverage for hypertensive, osteoporosis, and metabolic disturbances including the free radical scavengers and antioxidants that were used to prevent the important role in the prevention and treatment of chronic diseases.

The analysis of the acceptance of the beverage demonstrated that the mean scores of taste and aftertaste of formulated beverages were significantly different as compared to NBR (Figure 3). The mean scores for taste and aftertaste were highest in NBR, moderate and lowest in FB1 and FB2, respectively. These data are in agreement with recent work that has shown the addition of a higher concentration of cardamon rhizome spices into drinks reduce the preference of panelist on taste and aftertaste. The lower significant value of the taste and aftertaste in FB2 as compared to NBR and FB1 could be due to the addition of *F. deltoidea* leaves into the beverage. This condition might be the consequence of an unfamiliar sensation perceived by the panelist when tasting the beverage added *F. deltoidea* leaves. It has been reported that functional beverages enriched with medicinal plants and herbs are usually prepared using raw materials with high polyphenolic compounds. A high amount of polyphenolic components in food are perceived as being bitter, tart, or astringent. Even so, taste and aftertaste are not used as criteria for functional food products since products claiming to be healthy beverages are normally tasteless and perhaps a little bitter. Therefore, the selection of FB2 for further study on toxicological profiles might be considered as there is no significant difference in appearance, color, aroma and overall testing parameters. Incorporation of *F. deltoidea* not only improves the acceptance of the FB2 but also its physicochemical, phytochemical and nutritional value. The consistency of higher antioxidant activity shown in each antioxidant assay may also support the selection of FB2 for toxicity study.

Assessment and evaluation of the toxicological profile are required in screening the new beverage product development. There were no adverse toxicity signs and mortality recorded on the tested rats up to 14 days observation after administration of the FB2 at a single dose of 2000 mg/kg bwt. This study indicates that FB2 does not cause acute toxicity effects at the dose tested and with the LD₅₀ value greater than 2000mg/kg bwt. This data was aligned with a study conducted by reporting that there is no overt symptoms of acute toxicity or death were observed in mice and rats upon treatment of methanol extract of *F. deltoidea* up to the dose of 6400 mg/kg bwt. According to substances with LD₅₀ values higher than 5000 mg/kg bwt by the oral route are regarded as being safe or practically nontoxic. Hence, the absence of lethality and sign of...
toxicity in rats suggest that the FB2 beverage is well tolerated and safe to be used when administered orally. Our acute toxicity results also confirm earlier reports showing that consumption of a plant sterol is safe to use over a long period.83

The food consumption of FB2-treated rats decreased significantly as compared to the control group. It was observed that the animals treated with FB2 consumed less food than the control group. However, there were no differences between treated and control groups for water consumption. A similar finding has been reported by84 on the food intake of rats treated with 4000 mg/kg bwt of Red Hawn Kefir Powder. Reduce food intake in animals after FB2 administration could be attributed to the presence of brown rice in the beverage formula. Brown rice is one of the whole-grain foods that contain carbohydrates with a low glycemic index which helps to reduce the blood glucose level.85,86 Foods with a low glycemic index are regarded to have a higher satiating capacity.87 Whole-grain foods contain dietary fibre that is capable to influence glucose metabolism, gastrointestinal transit, and gastrointestinal hormone secretions, all of which can influence appetite by preventing hunger and stimulating lower food intake.88,89 It has been revealed in a study that higher consumption of whole-grain food is associated with a lower risk of weight gain and incident overweight or obesity.90 Therefore, it is relevant to suggest that FB2 is not only safe to consume but can reduce appetite and food intake which can lower the risk of obesity.

Animals in both treated and control groups presented a progressive increase in body weight throughout the study period (Figure 4C). There is no statistical difference between control and treated groups in the body weight changes. The results also showed that the relative organ weight was not significantly different between the control and treated groups. The present finding is supported by previous research that stated that the relative organ weight of mice treated with 2000 mg/kg bwt ethanolic extract of F. deltoidea leaves did not show a significant difference.91 The haematological parameters (platelet, haematocrit, haemoglobin, neutrophil, eosinophil, basophil, lymphocyte and monocyte) showed that administration of FB2 beverage did not induce toxicity, as we did not observe any significant difference in this blood sample between control and treated groups. Analysis of blood parameters is relevant to risk assessment as the changes in the haematological system have a higher predictive value for human toxicity when data are transposed from animal studies.92 It is therefore plausible to suggest that the FB2 beverage is not haematoxic. The histopathological examination confirmed there were no changes seen at a single dose of 2000 mg/kg bwt in liver and kidney morphology harvested from both control and treated groups. In general, any injury to the parenchymal liver or kidney cells causes a change in the blood parameters.93 Normal architecture seen on the liver and kidney tissues of treated rats suggests that there are no apparent adverse effects or morphological abnormalities caused by the oral administration of a single dose of 2000 mg/kg bwt of FB2 beverage.

CONCLUSIONS

The present study showed that the new functional beverage formulated from fine powder mixtures of F. deltoidea leaves and brown rice contains high amounts of phytochemical constituents and antioxidant activities. Consumers accepted the new beverage formulation with an overall acceptability rating of more than 5.0. The study also demonstrated that the newly developed beverage is safe to be used up to the tested concentration limit of 2000 mg/kg bwt.

ETHICAL ISSUES

All experimental procedures were approved by the ethics committee of the Animal Research and Ethics Committee, Universiti Teknologi Mara (UiTM CARE) with an approval number: UiTM CARE: 325/2020.

23. Hazwani SH. Enzymatic extraction of Ficus deltoidea for better enhancement of extracted yield. 2014;2.

GRAPHICAL ABSTRACT

ABOUT AUTHORS

Nur Ain Sabrina Azmi, MSc: is a postgraduate student at Universiti Teknologi MARA, Malaysia. She obtained her Bachelor of Science in Biology (Hons.) at the Faculty of Applied Sciences, Universiti Teknologi MARA, Malaysia in 2019. She presented her papers at the AFOB Malaysia Chapter International Symposium 2021 (AFOBMCIS) on 22-23 September 2021 virtually.

Nurdiana Samsulrizal, PhD: is currently the Head of Industrial Research Lab and senior lecturer at the Faculty of Applied Sciences, Universiti Teknologi MARA, Malaysia. Her research interest focuses on physiology, pharmacology, biochemistry, and natural products.

Siti Aimi Sarah Zainal Abidin, PhD: is the head of Halal Service Laboratory, Malaysia Institute of Transport (MITTRANS), and a senior lecturer at the Faculty of Applied Sciences, Universiti Teknologi MARA, Malaysia. Her research niche area is in meat authentication, halal product testing and proteomics.
Noor Syaffinaz Noor Mohamad Zin, PhD: is a postgraduate student in the Faculty of Applied Sciences, Universiti Teknologi MARA, Malaysia. Research interest in memory and learning behavior, complementary medicine, biochemistry, brain histology and antidiabetic research.

Norul Hamiza Zamzuri, PhD: is an Associate Professor at the Faculty of Business Management, Universiti Teknologi MARA, Malaysia. Her research interest is sustainability development, event management, and management information system.

Yong Meng Goh, PhD: is a Professor of physiology at the Faculty of Veterinary Medicine, Malaysia, Universiti Putra Malaysia, Malaysia. His research is around understanding how lipid metabolism affects cellular functions in living animals. Apart from investigating the roles of lipids in diabetes and mental abilities, he is also interested in how fats are related to better meat and milk quality in animals.

Ana Sharmila Shafie, MSc: is a postgraduate student in Universiti Teknologi MARA, Malaysia and a researcher in SIRIM Sdn Bhd, Malaysia. Research interest in antioxidant and anti-aging.

Rohaizad Abdul Raoof, is a director of Bio Fluid Sdn Bhd, Malaysia. He is actively collaborating with local and international universities to develop a series of cutting-edge products.