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BACKGROUND
Endothelial dysfunction describes the transition 
from a normal and healthy endothelium to a 
damaged or stressed endothelium characterized by 
a pro-vasoconstriction, pro-coagulation, and pro-
inflammatory phenotype.1 In diving, inflammation 
and endothelial dysfunction are considered 
contributing factors to decompression sickness 
triggered by bubbles.2-5

The luminal side of the blood vessel endothelium 
is covered by the glycocalyx, which consists 
of proteoglycans, glycosaminoglycans, and 
glycoproteins. The glycocalyx serves as a crucial 
regulator of mechanotransduction, thrombosis, 
inflammation, vascular permeability, and cytokine 
signaling due to its interactions with circulating 
cells, such as immune cells.6-8 Syndecan-1 is a 
proteoglycan component that has been extensively 
investigated in its association with mechanosensory 
shear stress in endothelial cells9, regulating the 
differentiation of vascular smooth muscle cells10, 
and endothelial inflammatory mediators.11 
Elevated circulating levels of Syndecan-1 indicate 
degradation of the endothelial glycocalyx, which is 
linked to increased mortality, coagulopathy, and 
inflammation.12

One protein that has received attention regarding 
its involvement in endothelial dysfunction is 
Sirtuin-1. Sirt-1 is expressed in large quantities 
in endothelial cells and is the sole member of the 
Sirtuin family that exhibits unique regulation of 
endothelial cell physiology, including enhancing 
the vasodilator and regenerative function of the 
blood vessel wall through modulating the activity 
of eNOS, FOXO1, p53, and angiotensin II (Ang 
II) type 1 receptor (AT1R).13 Sirt-1 also modulates 
monocyte adhesion and foam cell formation by 
regulating VCAM-1 and ICAM-1 expression14, 

prevents hydrogen peroxide-induced endothelial 
cell death through deacetylation of the tumor 
suppressor p53, and protects blood vessels from 
endothelial dysfunction-induced hyperglycemia 
through mechanisms that involve reducing the 
expression of p66Shc15 and regulating eNOS through 
deacetylation of lysine 496 and 506.16

Hyperbaric oxygen therapy (HBO2) involves the 
use of 100% oxygen in a high-pressure chamber to 
treat diving-related injuries such as decompression 
sickness or other clinical conditions such as 
gangrene.17 HBO2 has mechanical effects that can 
reduce air bubbles18-20 and biomolecular effects, 
including anti-inflammatory21,22 and antioxidant 
induction.23,24 Due to these effects, HBO2 has also 
been studied as a preconditioning method.24,25

HBO2 has been proven to reduce the number of 
bubble nuclei in endothelial cells, which are believed 
to be the origin of bubble formation during diving.26 
However, it has never been studied how HBO2 
affects the glycocalyx layer, the outermost part of 
endothelial cells. 

Protection of this layer has been proven to protect 
endothelial cells from mechanical damage, including 
bubbles.27 Mechanical injury to the glycocalyx layer, 
as indicated by increased circulating Syndecan-1, 
leads to increased adhesion of immune complexes, 
complement activation, and intravascular 
coagulation.28-31 Syndecan-1 (CD138) is part of the 
endothelial proteoglycans involved in various cellular 
processes, including migration, differentiation, 
and proliferation. Syndecan-1 can act as a pro- and 
anti-inflammatory molecule, depending on whether 
it is present on the cell surface or dissolved in the 
circulation.8 

Hyperoxic conditions in HBO2 lead to elevated 
production of reactive nitrogen species (RNS) 
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and reactive oxygen species (ROS).2,32 ROS can cause damage to 
deoxyribonucleic acid (DNA), proteins, lipid membranes, and other 
cellular components33, and the products of lipid peroxidation can serve 
as markers for oxidative stress.34 The initial signaling induced by ROS 
includes the activation of transcription factors and post-translational 
proteins, including mitogen-activated protein kinase (MAPK), nuclear 
factor kappa beta (NF-κB), the heat shock response, the p53 pathway, 
phosphoinositide 3-kinase (PI(3)K/Akt), and FOXO. ROS can 
function as secondary or tertiary messengers in the activation of these 
redox-sensitive pathways.35 HBO2 induces NF-κB activation in human 
PBMCs, occurring four hours after HBO2 administration, which is a 
crucial step in HBO2 treatment.36

NF-κB responds to cytokines, toxins, and stress, resulting in 
inflammatory processes, cellular adaptation and apoptosis.37 The 
activation of NF-κB is influenced by the cell’s redox status, which affects 
the phosphorylation of serine 19 and 23 and the inhibitory subunit 
(IκB) of NF-κB.38 The cytokine IL-1 can activate NF-κB through the 
IL-1 receptor (IL-1R) and TLRs. These pathways activate many genes 
involved in the inflammatory response, such as VCAM-1.39

The oxidative stress induced by HBO2 triggers the activation of nuclear 
factor erythroid 2-related factor 2 (Nrf2), one of the endothelial cell 
protection genes.40,41 Nrf2 is also involved in the neuroprotective 
effects of Sirtuin-1 (Sirt-1) in preconditioned HBO2 for a cerebral 
ischemia model.42 HBO2 also prevents endothelial dysfunction in 
mice with dyslipidemia by increasing Sirt-1.43 Sirt-1 is expressed in 
large amounts in endothelial cells, and its levels fluctuate according 
to cellular processes. It is the only member of the sirtuin family that 
has been demonstrated to regulate endothelial cell physiology through 
deacetylation of histone and non-histone proteins, including enhancing 
the vasodilator and regenerative function of blood vessel walls by 
modulating the activity of eNOS, FOXO1, p53, and angiotensin II 
(Ang II) type 1 receptor (AT1R).13,44,45,16,15 Endothelial cell Sirt-1 and 
eNOS are regulated through positive feedback resulting in resistance to 
oxidative stress.46 NO generated by eNOS reduces the hydrophobicity 
of the endothelial wall and maintains endothelial integrity, thereby 
reducing the number of nuclei47,48, decreasing bubble formation, and 
reducing the severity of tissue injury.49,50   

The enzymatic activity of Sirt-1 is controlled directly and indirectly 
by ROS.51 Although it has been proven that inhibition of Sirt-1 causes 
an increase in ROS levels, the mechanism underlying the reduction 
in ROS by Sirt-1 remains unclear.46 Antagonistic crosstalk occurs in 
the NF-κB and Sirt-1 pathways in regulating ROS in endothelial cells. 
Sirt-1 inhibits NF-κB directly by deacetylating the RelA/p65 subunit 
at lysine 310 or by activating AMPK and peroxisome proliferator-
activated receptor alpha (PPARα), which inhibit the NF-κB pathway, 
thereby reducing ROS formation.52 Meanwhile, NF-κB suppresses 
Sirt-1 activation through the generation of ROS. Thus, Sirt-1 regulates 
NF-κB signals to control ROS production, and NF-κB reduces Sirt-1 
levels to increase ROS production.46 Sirt-1 also modulates foam cell 
formation and monocyte adhesion by regulating the expression of 
VCAM-1 and ICAM-1.14 Whether this modulation occurs through 
NF-κB still requires further research.   

The mechanism involved in the use of HBO2 in preventing endothelial 
dysfunction in diving is not yet defined. Research on the Sirt-1/eNOS 
and Sirt-1/NF-κB pathways related to the administration of hyperbaric 
therapy has not been fully explored, and the condition of the glycocalyx 
after HBO2 administration has never been studied before. This study 
aims to examine the effect of HBO2 on endothelial injury, oxidative 
stress, and subsequent inflammation through Syndecan-1, MDA, 
VCAM-1, and IL-1 serum and endothelial NF-κB. This study also 
analyzes the effect of HBOT on endothelial Sirt-1 and eNOS, which are 
considered factors in preventing endothelial dysfunction.

METHODS
This study employed a true experimental post-test design. Twenty 
male Sprague Dawley rats aged 12-14 weeks were divided into pre- and 
post-diving groups (n = 10). The diving was conducted in an animal 
hyperbaric chamber at the UPN Veteran Jakarta animal hyperbaric 
lab. Serological examinations were carried out at PSSP IPB, and IHK 
analyses were conducted at iRatLab Bogor.

The pre-diving group was terminated before the study began to obtain 
baseline values, and the post-diving group was terminated 18 hours 
after the administration of HBO2. HBO2 was administered at 2.4 ATA 
for 60 minutes. 

Experimental animals were provided with unlimited access to pelleted 
rodent food and water. The room lighting was regulated on a cycle of 12 
hours of light and 12 hours of darkness. The temperature was maintained 
at 23-25 °C, and the relative humidity ranged from 50.0% to 56.0%. 

Serum Processing
Rats were anesthetized with 0.3 ml of ketamine intramuscularly until 
they became unconscious. Blood was drawn intracardially using a 3cc 
syringe, placed in a plain vacutainer, and left at room temperature for 
30 minutes before centrifugation. Blood was centrifuged at 3,000 rpm 
for 15 minutes to isolate serum and stored at -20 °C.

Serum testing was carried out at the Animal Research Laboratory 
of the Center for Primate Animal Studies (PSSP) of IPB University. 
Syndecan-1, VCAM-1, IL-1α, and Sirt-1 were examined using 
immunoenzymatic ELISA according to the manufacturer's instructions. 
MDA was examined using the colorimetric method (TBA method). 

All kits used were sourced from Elabscience, Texas, USA: Rat 
Syndecan-1 (E-EL-R0996), VCAM-1/CD106 (E-EL-R1061), IL-1α 
(E-EL-R0011), Sirt-1 (E-EL-R1102), and MDA (E-BC-K023-M). The 
absorbance was read at 450 nm, and the concentration was determined 
by comparing the optical density with a standard curve.

Tissue Processing
After blood collection, the pulmonalis was immediately stored in a 
bottle containing a 10% formalin solution. On the same day, it was 
delivered to iRatLab Bogor for preparation and immunohistochemistry 
assays. 

The first step involved tissue processing (dehydration, clearing, and 
embedding). The tissue was fixed and cut into 0.3-0.5 cm thick sections, 
then dehydrated using a Thermo Scientific™ machine (STP 120 Spin 
Tissue Processing type). The samples were automatically transferred 
from alcohol solutions with graded concentrations: 70% alcohol (1 
hour), 80% (1 hour), 90% (1 hour), 95% (1 hour), 100% alcohol I (1 
hour), 100% II (1 hour), and 100% III (1 hour). The clearing process 
was carried out with xylol: Xylol I (45 minutes), Xylol II (45 minutes), 
and Xylol III (45 minutes). Next, liquid paraffin was infiltrated into the 
tissue using paraffin I, II, and III at a temperature of 60 °C for 30 minutes 
each in a Thermo Scientific™ machine. The embedding was conducted 
using a Sakura Tissue TEK III model 4584 tissue embedding machine. 
After that, liquid paraffin was applied, and the paraffin block was cooled 
overnight. The paraffin blocks were cut using a Leica brand microtome 
type RM2235 microtome with a thickness of 4-5 μm, and preparations 
were made. Before staining, the preparations were incubated at a 
temperature of 37 °C. Special slides for immunohistochemical staining 
were coated with poly-l-lysine (Sigma P8920). 

All IHC staining kits were sourced from Abcam, Cambridge, UK: 
Anti-NOS3 Antibody (A-9) (sc-376751), Anti-SIRT1 Antibody (B-7) 
(sc-74465), Anti-NFκB p65 Antibody (F-6) (sc-8008), and m-IgG Fc 
BP-HRP, 50 µg/0.5 ml (sc-525409).
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IHC reading was performed using a Japanese Nikon Eclipse 80i DS-Fi1 
microscope with 400x magnification. The displayed image was analyzed 
with the J-image application to calculate the unit in percentage.

Data Analysis
The data obtained were analyzed using the Shapiro-Wilk test and 
displayed as mean ± SD. An independent t-test was employed to 
analyze the effect of HBO on all the variables studied. The significance 
level for all statistical analyses was set at p < 0.05.

RESULTS
None of the experimental animals displayed any barotrauma or seizures 
during and after HBO2 treatment. The results are presented in Table 1.

Inflammation
We selected MDA, NF-κB, IL-1, and VCAM-1 as parameters indicating 
inflammation. The expression of endothelial MDA and NF-κB showed 
significant changes. Elevated MDA levels were observed after HBO2 
treatment (252.03 ± 62.22 vs. 159.65 ± 57.12; p = 0.007). Similarly, an 
elevated endothelial NF-κB expression was noted after HBO2 treatment 
(1.04 ± 0.29 vs. 0.56 ± 0.19; p = 0.001). 

Conversely, circulating VCAM-1 and IL-1 levels decreased, although 
the decrease was not significant. Serum VCAM-1 levels decreased from 
18.28 ± 4.43 to 14.51 ± 5.05 (p = 0.168), and serum IL-1 levels decreased 
from 72.51 ± 69.22 to 53.34 ± 10.97 (p = 0.707).

Endothelial Dysfunction
Our study showed that the administration of HBO2 only affected serum 
levels of Syndecan-1 but did not affect endothelial eNOS and Sirt-1 
levels. However, HBO2 significantly lowered circulating Syndecan-1 
levels compared to controls (10.41 ± 2.50 vs. 14.98 ± 5.01; p = 0.026).

Although it did not achieve statistical significance, the expression of 
endothelial eNOS decreased after HBO2 treatment (14.51 ± 6.47 vs. 
18.54 ± 9.01; p = 0.056), while the expression of endothelial Sirt-1 
slightly increased after HBO2 treatment (1.69 ± 0.99 vs. 1.41 ± 1.1; p 
= 0.653).

DISCUSSION

Inflammation
An increase in oxygen levels due to HBO2 leads to elevated dissolved 
oxygen in serum and tissues (hyperoxia). Hyperoxia causes elevated 
production of ROS, such as superoxide and peroxynitrite, decreased 
NO levels, and increased endothelial cell death due to oxidative stress. 
Serum MDA levels, a product of lipid oxidation, serve as a sensitive 
marker of endothelial dysfunction.1

The increased ROS formation in this study was followed by an increase 
in the pro-inflammatory transcription factor NF-κB by initiating 
IκB dissociation, thus resulting in the translocation of NF-κB to 
DNA chains. Many genes involved in the inflammatory response are 

activated through this pathway, including MnSOD, iNOS, VCAM-
1, inflammatory cytokines (TNF and Interleukins (IL-1, IL-2, IL-6)), 
inducible COX-2, chemokines, and adhesion molecules.39

VCAM-1 is an adhesion factor expressed on activated endothelial 
cells and can also be found in soluble form in serum. It helps regulate 
inflammation-related vascular adhesion and trans-endothelial 
migration of leukocytes, including macrophages and T cells. VCAM-1 
can be induced by ROS, interleukin-1 beta (IL-1β), or tumor necrosis 
factor-alpha (TNFα) produced by various cells.53 Recent research 
suggests that VCAM-1 has potential as a marker of endothelial changes. 
IL-1α is a cytokine serving as a signaling molecule in inflammation, 
including being one of the first responses to an insult. Cells that produce 
IL-1 include macrophages, endothelial cells, and epithelial cells. Its 
increase in serum indicates the presence of a systemic inflammatory 
process.54 

However, in this study, the increase in NF-κB was not accompanied 
by an increase in VCAM-1 and IL-1α. The ability of HBO2 to reduce 
VCAM-1 and IL-1α levels is consistent with other research related to 
the use of HBO2 as a precondition to prevent endothelial dysfunction in 
decompression sickness and diabetic foot treatment.21,55 This indicates 
that oxidative stress due to HBO2 treatment is not sufficient to cause 
endothelial dysfunction and inflammation. 

An increase in MDA without being followed by other pro-inflammatory 
variables suggests that HBO2 does not cause oxidative stress but 
oxidative eustress. Oxidative stress results from an imbalance between 
the elevated formation of reactive nitrogen species (RNS) and reactive 
oxygen species (ROS) and available antioxidants.56.57 Oxidative eustress 
refers to a physiological adaptive oxidative stress response (low level) 
used in redox signaling and regulation.58 These results align with other 
studies stating that hyperoxic conditions resulting from hyperbaric 
oxygen therapy increase the expression of ROS (MDA)59-61 without 
systemic inflammation.62 

Endothelial Dysfunction
Elevated serum syndecan-1 levels indicate cell damage, inflammation, 
or activation of endothelial cells. Syndecan-1 is now used as a target 
in treating inflammation, including in COVID-19 patients.30 The 
significant decrease in serum syndecan-1 in this study indicates 
the absence of endothelial injury and supports the statement that 
HBO2 does not cause inflammation. This result raises new questions 
regarding the underlying mechanism. Whether HBO2 can prevent 
endothelial injury by maintaining the integrity of the glycocalyx and 
the mechanisms involved should be explored in future studies.

Although HBOT decreases markers of endothelial dysfunction and 
inflammation, these decreases do not appear to occur through Sirt-1 
and eNOS. Sirt-1 is an important protein that can affect the activation 
of NF-κB and eNOS through the deacetylation process. Sirt-1 also 
mediates monocyte adhesion and foam cell formation by regulating 
the expression of VCAM-1 and intercellular adhesion molecule-1 
(ICAM-1).14 Recent studies show that HBO2 increased Sirt-1 levels, 
leading to an improvement in endothelial dysfunction.51,43 The results 
of this study differ from previous studies, possibly because they provide 
new information regarding the kinetics of changes in Sirt-1 and eNOS 
levels. This difference suggests that a certain dose of HBO2 is needed 
to increase Sirt-1 and eNOS levels. Thus, further research is needed on 
the dosage of HBO2 hormesis that can increase Sirt-1 and eNOS levels.

CONCLUSION 
A single HBO2 treatment did not cause inflammation or endothelial 
dysfunction, as shown by a decrease in the levels of Syndecan-1, IL-
1, and VCAM-1, despite an increase in MDA and NF-κB levels. It is 
still too early to conclude that Sirt-1 and eNOS are not involved in the 

Parameter Pre HBO Post HBO p
MDA 159.65 ± 57.12 252.03 ± 62,22 0.007*
IL-1 72.51 ± 69.22 53.34 ± 10.97 0.707
Syndecan-1 14.98 ± 5.01 10.41 ± 2.50 0.026*
VCAM-1 18.28 ± 4.43 14.51 ± 6.47 0.168
NF-kB Endothel 0.56 ± 0.19 1.04 ± 0.29 0.001*
eNOS Endothel 18.54 ± 9.01 11.45 ± 5.05 0.056
Sirt-1 Endothel 1.46 ± 1.1 1.69 ± 0.99 0.653

Level of significant p < 0.05

Table 1. Mean levels of studied variables pre- and post-HBO2.
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mechanism of preventing inflammation and endothelial dysfunction 
when administering HBO2, considering the differences between the 
doses given and other studies that provide different results. Further 
research is required to determine the optimal dose of HBO2 hormesis 
that can increase Sirt-1 and eNOS levels.
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